Cite this article as: | Haixu Li, Haobo He, Tiannan Jiang, Yunfei Du, Zhichen Wu, Liang Xu, Xinjie Wang, Xiaoguang Liu, Wanhua Yu, and Wendong Xue, Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp.169-181. https://dx.doi.org/10.1007/s12613-024-2953-1 |
This work was financially supported by the National Natural Science Foundation of China (Nos. 51602018 and 51902018), the Natural Science Foundation of Beijing Municipality (No. 2154052), the China Postdoctoral Science Foundation (No. 2014M560044), the Fundamental Research Funds for the Central Universities (No. FRF-MP-20-22), USTB Research Center for International People-to-people Exchange in Science, Technology and Civilization (No. 2022KFYB007), and Education and Teaching Reform Foundation at University of Science and Technology Beijing (Nos. 2023JGC027, KC2022QYW06, and KC2022TS09).
The authors have no relevant financial or non-financial interests to disclose.
[1] |
Y.C. Yang, Q.L. Zhu, X.W. Peng, et al., Hydrogels for the removal of the methylene blue dye from wastewater: A review, Environ. Chem. Lett., 20(2022), No. 4, p. 2665. DOI: 10.1007/s10311-022-01414-z
|
[2] |
X.T. Huo, R.X. Chai, L.Z. Gou, M. Zhang, and M. Guo, Facile synthesis of composite polyferric magnesium–silicate–sulfate coagulant with enhanced performance in water and wastewater, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 574. DOI: 10.1007/s12613-023-2704-8
|
[3] |
X.D. Du and M.H. Zhou, Strategies to enhance catalytic performance of metal–organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal, Chem. Eng. J., 403(2021), art. No. 126346. DOI: 10.1016/j.cej.2020.126346
|
[4] |
J.L. Wang and S.Z. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J., 334(2018), p. 1502. DOI: 10.1016/j.cej.2017.11.059
|
[5] |
J.Q. Wang, B. Hasaer, M. Yang, et al., Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+, Sci. Total Environ., 713(2020), art. No. 136530. DOI: 10.1016/j.scitotenv.2020.136530
|
[6] |
P.D. Hu and M.C. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications, Appl. Catal. B Environ., 181(2016), p. 103. DOI: 10.1016/j.apcatb.2015.07.024
|
[7] |
J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. DOI: 10.1007/s12613-022-2473-9
|
[8] |
G.J. Lv, T. Wang, X.Y. Zou, et al., Highly dispersed copper oxide-loaded hollow Fe-MFI zeolite for enhanced tetracycline degradation, Colloids Surf. A, 655(2022), art. No. 130250. DOI: 10.1016/j.colsurfa.2022.130250
|
[9] |
W.J. Peng, L.X. Cai, Y.N. Lu, and Y.Y. Zhang, Preparation of Mn–Co-MCM-41 molecular sieve with thermosensitive template and its degradation performance for rhodamine B, Catalysts, 13(2023), No. 6, art. No. 991. DOI: 10.3390/catal13060991
|
[10] |
Q.Y. Yi, J.L. Tan, W.Y. Liu, H. Lu, M.Y. Xing, and J.L. Zhang, Peroxymonosulfate activation by three-dimensional cobalt hydroxide/graphene oxide hydrogel for wastewater treatment through an automated process, Chem. Eng. J., 400(2020), art. No. 125965. DOI: 10.1016/j.cej.2020.125965
|
[11] |
Z.Y. Yang, X. Li, Y.Z. Huang, et al., Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics, J. Clean. Prod., 310(2021), art. No. 127584. DOI: 10.1016/j.jclepro.2021.127584
|
[12] |
C.L. He, Y. Liu, M.W. Qi, et al., A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 585. DOI: 10.1007/s12613-023-2737-z
|
[13] |
T.H. Ma, H.X. Li, X.G. Liu, et al., Preparation of cobalt and nitrogen-doped porous carbon composite catalysts from ZIF-9 and their outstanding Fenton-like catalytic properties towards methylene blue, ChemistrySelect, 8(2023), No. 18, art. No. e202204785. DOI: 10.1002/slct.202204785
|
[14] |
C.G. Hu and L.M. Dai, Doping of carbon materials for metal-free electrocatalysis, Adv. Mater., 31(2019), No. 7, art. No. e1804672. DOI: 10.1002/adma.201804672
|
[15] |
Y. Gao, Q. Wang, G.Z. Ji, and A.M. Li, Degradation of antibiotic pollutants by persulfate activated with various carbon materials, Chem. Eng. J., 429(2022), art. No. 132387. DOI: 10.1016/j.cej.2021.132387
|
[16] |
W.Q. Huang, S. Xiao, H. Zhong, M. Yan, and X. Yang, Activation of persulfates by carbonaceous materials: A review, Chem. Eng. J., 418(2021), art. No. 129297. DOI: 10.1016/j.cej.2021.129297
|
[17] |
S.J. Zhang, X.W. Huo, S.Z. Xu, et al., Original sulfur-doped carbon materials synthesized by coffee grounds for activating persulfate to BPA degradation: The key role of electron transfer, Process. Saf. Environ. Prot., 168(2022), p. 1219. DOI: 10.1016/j.psep.2022.10.073
|
[18] |
S.Y. Liu, C. Lai, B.S. Li, et al., Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation, Chem. Eng. J., 427(2022), art. No. 131655. DOI: 10.1016/j.cej.2021.131655
|
[19] |
C.L. Ding, Z. Liu, S.Y. Pan, et al., Activation of peroxydisulfate via Fe@sulfur-doped carbon-supported nanocomposite for degradation of norfloxacin: Efficiency and mechanism, Chem. Eng. J., 460(2023), art. No. 141729. DOI: 10.1016/j.cej.2023.141729
|
[20] |
J.L. Li, W.H. Zhu, Y. Gao, et al., The catalyst derived from the sulfurized Co-doped metal–organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal, Sep. Purif. Technol., 285(2022), art. No. 120362. DOI: 10.1016/j.seppur.2021.120362
|
[21] |
Y.W. Li, Q. Wu, R.C. Ma, et al., A Co-MOF-derived Co9S8@NS-C electrocatalyst for efficient hydrogen evolution reaction, RSC Adv., 11(2021), No. 11, p. 5947. DOI: 10.1039/D0RA10864B
|
[22] |
T. Yamada, Y. Kubo, and N. Kimizuka, Introduction of thiourea into metal–organic frameworks by immersion technique and their phase transition characteristics, Chem. Lett., 46(2017), No. 1, p. 115. DOI: 10.1246/cl.160910
|
[23] |
M.A. Asgari, M. Moradi, M.J. Eshraghi, and S. Hajati, A comparison between microwave reflection loss of MIL-53 derived Fe2O3 and MOF-71-derived Co3O4 through direct and indirect heat treatment, Synth. Met., 295(2023), art. No. 117337. DOI: 10.1016/j.synthmet.2023.117337
|
[24] |
J.Q. Dong, Z.Q. Gong, Y.Z. Chen, et al., Organic microstructure-induced hierarchically porous g-C3N4 photocatalyst, Sci. China Mater., 66(2023), No. 8, p. 3176. DOI: 10.1007/s40843-022-2463-8
|
[25] |
D. Chisca, L. Croitor, O. Petuhov, E.B. Coropceanu, and M.S. Fonari, MOF-71 as a degradation product in single crystal to single crystal transformation of new three-dimensional Co(II) 1, 4-benzenedicarboxylate, CrystEngComm, 18(2016), No. 1, p. 38. DOI: 10.1039/C5CE02094H
|
[26] |
L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito, and H.M. Cheng, Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations, Nano Energy, 25(2016), p. 203. DOI: 10.1016/j.nanoen.2016.04.053
|
[27] |
J. Li, H. Li, W. Xie, et al., Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction, Small Methods, 6(2022), No. 1, art. No. e2101324. DOI: 10.1002/smtd.202101324
|
[28] |
Z.Z. Du, X.J. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries, J. Am. Chem. Soc., 141(2019), No. 9, p. 3977. DOI: 10.1021/jacs.8b12973
|
[29] |
K.K. Qiu, Y.J. Zhang, L. Wang, M.Y. Wu, J.Y. Jin, and W.Q. Shi, N-functionalized Ti2C MXene as a high-performance adsorbent for strontium ions: A first-principles study, J. Phys. Chem. C, 127(2023), No. 23, p. 11167. DOI: 10.1021/acs.jpcc.3c00849
|
[30] |
T. Lu and F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33(2012), No. 5, p. 580. DOI: 10.1002/jcc.22885
|
[31] |
Y.Y. Liu, Z.R. Min, J.C. Jiang, et al., Molybdenum, cobalt sulfide-modified N-, S-doped graphene from low-temperature molecular pyrolysis: Mutual activation effect for hydrogen evolution, ACS Sustainable Chem. Eng., 7(2019), No. 24, p. 19442. DOI: 10.1021/acssuschemeng.9b04219
|
[32] |
X.C. Feng, Z.J. Xiao, H.T. Shi, et al., How nitrogen and sulfur doping modified material structure, transformed oxidation pathways, and improved degradation performance in peroxymonosulfate activation, Environ. Sci. Technol., 56(2022), No. 19, p. 14048. DOI: 10.1021/acs.est.2c04172
|
[33] |
D.H. Duan, W.W. Zhao, K.X. Chen, et al., MOF-71 derived layered Co–CoP/C for advanced Li–S batteries, J. Alloys Compd., 886(2021), art. No. 161203. DOI: 10.1016/j.jallcom.2021.161203
|
[34] |
Y. Zhou, W.H. Lv, B.L. Zhu, et al., Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution, ACS Sustainable Chem. Eng., 7(2019), No. 6, p. 5801. DOI: 10.1021/acssuschemeng.8b05374
|
[35] |
C.A. Téllez S, E. Hollauer, M.A. Mondragon, and V.M. Castaño, Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 57(2001), No. 5, p. 993. DOI: 10.1016/S1386-1425(00)00428-5
|
[36] |
S.A. Abrori, N.L.W. Septiani, F.N. Hakim, et al., Non-enzymatic electrochemical detection for uric acid based on a glassy carbon electrode modified with MOF-71, IEEE Sens. J., 21(2021), No. 1, p. 170. DOI: 10.1109/JSEN.2020.3014298
|
[37] |
M. Mouanga, L. Ricq, and P. Berçot, Effects of thiourea and urea on zinc–cobalt electrodeposition under continuous current, J. Appl. Electrochem., 38(2008), No. 2, p. 231. DOI: 10.1007/s10800-007-9430-1
|
[38] |
Y.P. Guo, Z.Q. Zeng, Y.L. Li, Z.G. Huang, and Y. Cui, In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics, Catal. Today, 307(2018), p. 12. DOI: 10.1016/j.cattod.2017.05.080
|
[39] |
S.Z. Wang and J.L. Wang, Peroxymonosulfate activation by Co9S8@ S and N co-doped biochar for sulfamethoxazole degradation, Chem. Eng. J., 385(2020), art. No. 123933. DOI: 10.1016/j.cej.2019.123933
|
[40] |
G. Zhang, P. Wang, W.T. Lu, et al., Co nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting, ACS Appl. Mater. Interfaces, 9(2017), No. 34, p. 28566. DOI: 10.1021/acsami.7b08138
|
[41] |
J. Tang, R.R. Salunkhe, H. Zhang, et al., Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons, Sci. Rep., 6(2016), art. No. 30295. DOI: 10.1038/srep30295
|
[42] |
Q.Q. Ren, Z.Y. Wu, S. Hu, et al., Sulfur self-doped char with high specific capacitance derived from waste tire: Effects of pyrolysis temperature, Sci. Total Environ., 741(2020), art. No. 140193. DOI: 10.1016/j.scitotenv.2020.140193
|
[43] |
X.G. Duan, K. O’Donnell, H.Q. Sun, Y.X. Wang, and S.B. Wang, Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions, Small, 11(2015), No. 25, p. 3036. DOI: 10.1002/smll.201403715
|
[44] |
J. Deng, Y.J. Ge, C.Q. Tan, et al., Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: Effect of water constituents, degradation intermediates and toxicity evaluation, Chem. Eng. J., 330(2017), p. 1390. DOI: 10.1016/j.cej.2017.07.137
|
[45] |
Z.L. Wu, Z.K. Xiong, R. Liu, et al., Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability, J. Hazard. Mater., 427(2022), art. No. 128204. DOI: 10.1016/j.jhazmat.2021.128204
|
[46] |
M.X. Lu, G.Y. Kang, and Y.J. Deng, Construction of mesoporous S-doped Co3O4 with abundant oxygen vacancies as an efficient activator of PMS for organic dye degradation, CrystEngComm, 25(2023), No. 18, p. 2767. DOI: 10.1039/D3CE00067B
|
[47] |
H.X. Li, S.D. Xu, J. Du, J.H. Tang, and Q.W. Zhou, Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue, RSC Adv., 9(2019), No. 17, p. 9410. DOI: 10.1039/C9RA01143A
|
[48] |
Z.L. Wu, Y.P. Wang, Z.K. Xiong, et al., Core–shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine, Appl. Catal. B: Environ., 277(2020), art. No. 119136. DOI: 10.1016/j.apcatb.2020.119136
|
[49] |
F. Ghanbari and M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review, Chem. Eng. J., 310(2017), p. 41. DOI: 10.1016/j.cej.2016.10.064
|
[50] |
W.X. Qin, G.D. Fang, Y.J. Wang, and D.M. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals, Chem. Eng. J., 348(2018), p. 526. DOI: 10.1016/j.cej.2018.04.215
|
[51] |
J.K. Tan, X.D. Zhang, Y.W. Lu, X. Li, and Y.M. Huang, Role of interface of metal–organic frameworks and their composites in persulfate-based advanced oxidation process for water purification, Langmuir, 40(2024), No. 1, p. 21. DOI: 10.1021/acs.langmuir.3c02877
|
[52] |
Y.W. Yu, H.Y. Quan, Z.X. Zhang, et al., Nonradical pathway dominated activation of peroxymonosulfate by ZnFe2O4/C composites to eliminate tetracycline hydrochloride: Insight into the cycle of Zn/Fe and electron transfer, Sep. Purif. Technol., 322(2023), art. No. 124336. DOI: 10.1016/j.seppur.2023.124336
|
[53] |
J.L. Wang and S.Z. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants, Chem. Eng. J., 411(2021), art. No. 128392. DOI: 10.1016/j.cej.2020.128392
|
[54] |
J.B. Sun, D.J. Zhang, D.S. Xia, and Q. Li, Orange peels biochar doping with Fe–Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of SO−4⋅, · OH, 1O2 and electron transfer, Chem. Eng. J., 471(2023), art. No. 144832. DOI: 10.1016/j.cej.2023.144832
|
[55] |
S.Z. Wang, J. Hu, and J.L. Wang, Degradation of sulfamethoxazole using PMS activated by cobalt sulfides encapsulated in nitrogen and sulfur Co-doped graphene, Sci. Total Environ., 827(2022), art. No. 154379. DOI: 10.1016/j.scitotenv.2022.154379
|
[56] |
H.X. Li, Z.X. Yang, S. Lu, et al., Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism, Chemosphere, 273(2021), art. No. 129643. DOI: 10.1016/j.chemosphere.2021.129643
|
[57] |
W.K. Zhu, D. Kim, M.S. Han, et al., Fibrous cellulose nanoarchitectonics on N-doped carbon-based metal-free catalytic nanofilter for highly efficient advanced oxidation process, Chem. Eng. J., 460(2023), art. No. 141593. DOI: 10.1016/j.cej.2023.141593
|
[58] |
H.X. Li, J. Zhang, Y.Z. Yao, X.R. Miao, J.L. Chen, and J.H. Tang, Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants, Environ. Pollut., 255(2019), art. No. 113337. DOI: 10.1016/j.envpol.2019.113337
|
[59] |
W. Zhang, M. Li, W.T. Shang, et al., Singlet oxygen dominated core–shell Co nanoparticle to synergistically degrade methylene blue through efficient activation of peroxymonosulfate, Sep. Purif. Technol., 308(2023), art. No. 122849. DOI: 10.1016/j.seppur.2022.122849
|
[60] |
L.Y. Wu, P.P. Guo, X. Wang, H.Y. Li, A.Z. Li, and K.Y. Chen, Mechanism study of CoS2/Fe(III)/peroxymonosulfate catalysis system: The vital role of sulfur vacancies, Chemosphere, 288(2022), art. No. 132646. DOI: 10.1016/j.chemosphere.2021.132646
|
[61] |
Z. Zhu, Z.X. Liu, X. Tang, et al., Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: Insights by experiment and first-principles calculations, Catal. Sci. Technol., 11(2021), No. 5, p. 1725. DOI: 10.1039/D0CY02382E
|
[62] |
X.X. Wang, C.Y. Zhang, D.H. Li, et al., Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes, J. Hazard. Mater., 454(2023), art. No. 131469. DOI: 10.1016/j.jhazmat.2023.131469
|
[63] |
S.Q. Li, Y.J. Hou, Q.M. Chen, X.D. Zhang, H.Y. Cao, and Y.M. Huang, Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2581. DOI: 10.1021/acsami.9b20275
|
[64] |
S.Z. Wang, H.Y. Liu, and J.L. Wang, Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N–S–O–C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation, J. Hazard. Mater., 387(2020), art. No. 121669. DOI: 10.1016/j.jhazmat.2019.121669
|
[65] |
X.Q. Zhou, M.Y. Luo, C.Y. Xie, et al., Tunable S doping from Co3O4 to Co9S8 for peroxymonosulfate activation: Distinguished radical/nonradical species and generation pathways, Appl. Catal. B Environ., 282(2021), art. No. 119605. DOI: 10.1016/j.apcatb.2020.119605
|
[66] |
S.Z. Wang and J.L. Wang, High efficient activation of peroxymonosulfate by Co9S8 anchored in N, S, O co-doped carbon composite for degradation of sulfamethoxazole: Effect of sulfur precursor and sulfur doping content, Chem. Eng. J., 434(2022), art. No. 134824. DOI: 10.1016/j.cej.2022.134824
|
[67] |
G.S. Zhang, J.Y. Gao, J. Wang, H.F. Lin, J.X. Xu, and L. Wang, ZIF-67/melamine derived hollow N-doped carbon/Co9S8 polyhedron to activate peroxymonosulfate for degradation of tetracycline, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109355. DOI: 10.1016/j.jece.2023.109355
|
[68] |
Y. Jiang, J. Wang, B. Liu, et al., Superhydrophilic N, S, O-doped Co/CoO/Co9S8@carbon derived from metal-organic framework for activating peroxymonosulfate to degrade sulfamethoxazole: Performance, mechanism insight and large-scale application, Chem. Eng. J., 446(2022), art. No. 137361. DOI: 10.1016/j.cej.2022.137361
|
[69] |
Y.K. Long, S. Li, Y.P. Su, et al., Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: Low iron leaching, degradation mechanism and intermediates, Chem. Eng. J., 404(2021), art. No. 126499. DOI: 10.1016/j.cej.2020.126499
|
[70] |
Y. Gao, T.W. Wu, C.D. Yang, et al., Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal–N–C catalysts, Angew. Chem. Int. Ed Engl., 60(2021), No. 41, p. 22513. DOI: 10.1002/anie.202109530
|
[71] |
G.X. Zhu, J.L. Zhu, Q. Liu, et al., HPO2−4 enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: Critical roles of superoxide radical, singlet oxygen and electron transfer, Phys. Chem. Chem. Phys., 23(2021), No. 9, p. 5283. DOI: 10.1039/D0CP04773B
|
[1] | C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, C. A. Rodríguez-González. Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1467-1476. DOI: 10.1007/s12613-019-1863-0 |
[2] | Chun-fu Kuang, Zhi-wang Zheng, Min-li Wang, Quan Xu, Shen-gen Zhang. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1379-1383. DOI: 10.1007/s12613-017-1530-2 |
[3] | Deepak Pathania, Rishu Katwal, Harpreet Kaur. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(3): 358-371. DOI: 10.1007/s12613-016-1245-9 |
[4] | Lin-lin Yuan, Jing-tao Han, Jing Liu, Dong-bin Wei, Mehari Zelalem Abathun. Titanium effect on the microstructure and properties of laminated high boron steel plates [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(5): 492-499. DOI: 10.1007/s12613-015-1098-7 |
[5] | Xiao-qiang Li, Zi-yang Li, Yong-quan Ye, Ke Hu. Preparation of in situ and ex situ reinforced Fe-10Cr-1Cu-1Ni-1Mo-2C containing NbC particles by milling and hot pressing [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(2): 157-166. DOI: 10.1007/s12613-015-1056-4 |
[6] | Zahra Hejri, Ali Akbar Seifkordi, Ali Ahmadpour, Seyed Mojtaba Zebarjad, Abdolmajid Maskooki. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 1001-1011. DOI: 10.1007/s12613-013-0827-z |
[7] | Ali Rasooli, Mehdi Divandari, Hamid Reza Shahverdi, Mohammad Ali Boutorabi. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2): 165-172. DOI: 10.1007/s12613-012-0533-2 |
[8] | Jun Li, Lian Zhou, Zuo-chen Li. Microstructures and mechanical properties of a new titanium alloy for surgical implant application [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 185-191. DOI: 10.1007/s12613-010-0211-1 |
[9] | Lianfeng Guo, Wenguang Zhang, Chengtao Wang. Preparation and crystallization control of nanoparticle hydroxyapatlte [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(5): 449-454. |
[10] | Benfu Hu, Shunmi Peng, H Takahashi. Irradiation Damage of Oxide Dispersion Strengthened Ferritic Steel after Recrystallization [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(3): 160-164. |
1. | Chunjie She, Guojun Chen, Xingwei Pei, et al. In Situ Observation of the Desulfurization of the Molten Steel by CaO–Al2O3 Desulfurizers. Metallurgical and Materials Transactions B, 2025. DOI:10.1007/s11663-025-03500-3 |
2. | N. Preisser, Y. Wang, J. Cejka, et al. Application of high-temperature confocal scanning laser microscopy to investigate non-metallic inclusions in steel: a review. Journal of Iron and Steel Research International, 2025, 32(2): 334. DOI:10.1007/s42243-024-01413-0 |
3. | Weijian Wang, Yuan Gao, Ying Ren, et al. Observation of Initial Interfacial Reaction between High Aluminum Molten Steel and CaO–Al2O3 Inclusion at 1873 K Using Laser Confocal Scanning Microscopy and Micro‐Computerized Tomography. steel research international, 2025, 96(1) DOI:10.1002/srin.202300803 |
4. | Yujie Cheng, Wei Chen, Jujin Wang, et al. Reaction Mechanism between MgO and MgOC Lining Refractories and a High‐Carbon Al‐Killed Steel. steel research international, 2025, 96(1) DOI:10.1002/srin.202400364 |
5. | Yi Wang, Jian-xun Fu, Deepoo Kumar, et al. State-of-art of in situ observations of inclusion agglomeration at steel/Ar and steel/slag interfaces: a review of recent development on experimental and theoretical studies. Journal of Iron and Steel Research International, 2025, 32(2): 315. DOI:10.1007/s42243-024-01410-3 |
6. | Bin Guo, Jujin Wang, Lifeng Zhang. Dissolution Kinetics of Al2O3, CaAl4O7, and MgAl2O4 Inclusions Into CaO–Al2O3–SiO2 Slags with Varying MgO Content. Metallurgical and Materials Transactions B, 2025, 56(1): 1029. DOI:10.1007/s11663-024-03412-8 |
7. | Yujie Cheng, Jujin Wang, Lifeng Zhang. Reaction mechanism between MgO and MgO–C lining refractories and an ultra-low-carbon Al-killed steel. Metallurgical Research & Technology, 2025, 122(1): 103. DOI:10.1051/metal/2024093 |
8. | Yujie Cheng, Shengchao Duan, Lifeng Zhang. Comparison Study of the Effect of MgO, MgO‐CaO, MgO‐Al2O3‐C, and MgO‐C Refractories on Cleanliness of a SiMn‐Killed Steel. steel research international, 2025. DOI:10.1002/srin.202400788 |
9. | Guojun Chen, Ying Ren, Minghui Wu, et al. <i>In-Situ</i> Observation of the Modification Behavior of Alumina Inclusions in a Calcium-treated Steel. ISIJ International, 2024, 64(8): 1263. DOI:10.2355/isijinternational.ISIJINT-2024-049 |
10. | Jujin Wang, Hong Liu, Lifeng Zhang. Modeling Study on the Evolution of Slag-Entrained Inclusions Containing La2O3 in a Calcium-Treated Aluminum-Killed Steel. Metallurgical and Materials Transactions B, 2024, 55(4): 2673. DOI:10.1007/s11663-024-03131-0 |
11. | Pengfei Wu, Xinyue Liu, Xiaoming Liu, et al. Effect of Industrial Byproduct Gypsum on the Mechanical Properties and Stabilization of Hazardous Elements of Cementitious Materials: A Review. Materials, 2024, 17(17): 4183. DOI:10.3390/ma17174183 |
12. | Fu-bin Gao, Fu-ming Wang, Xiang Zhang, et al. Effect of Al content in molten steel on interaction between MgO–C refractory and SPHC steel. Journal of Iron and Steel Research International, 2024, 31(4): 838. DOI:10.1007/s42243-023-01107-z |
13. | Qiang Wang, Chong Tan, Chang Liu, et al. Elaboration of A Coupled Numerical Model for Predicting Magnesia Refractory Damage Behavior in High-Temperature Reactor. Metallurgical and Materials Transactions B, 2024, 55(1): 168. DOI:10.1007/s11663-023-02947-6 |
14. | Chunjie She, Kaiyu Peng, Yu Sun, et al. Kinetic Model of Desulfurization During RH Refining Process. Metallurgical and Materials Transactions B, 2024, 55(1): 92. DOI:10.1007/s11663-023-02942-x |
15. | Jingcheng Wang, Zhentong Liu, Wei Chen, et al. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change. International Journal of Minerals, Metallurgy and Materials, 2024, 31(7): 1540. DOI:10.1007/s12613-024-2909-5 |
16. | Jujin Wang, Zi Ye, Lifeng Zhang. Fluid flow, slag entrainment, and composition evolution of slag inclusions during vacuum degassing refining. Metallurgical Research & Technology, 2024, 121(6): 605. DOI:10.1051/metal/2024075 |
17. | Chao Gu, Ziyu Lyu, Qin Hu, et al. Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 744. DOI:10.1007/s12613-022-2588-z |
18. | Ying Ren, Weijian Wang, Wen Yang, et al. Modification of Non-metallic Inclusions in Steel by Calcium Treatment: A Review. ISIJ International, 2023, 63(12): 1927. DOI:10.2355/isijinternational.ISIJINT-2023-143 |
19. | Shuai Hao, Guoping Luo, Yuanyuan Lu, et al. Thermodynamic Analysis of Mineral Phase Composition of Steel Slag System. Minerals, 2023, 13(5): 643. DOI:10.3390/min13050643 |
20. | Yunsong Liu, Enhui Wang, Linchao Xu, et al. Synthesis of CA6/AlON composite with enhanced slag resistance. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 756. DOI:10.1007/s12613-022-2435-2 |
21. | Lan Gou, Hong Liu, Ying Ren, et al. Concept of Inclusion Capacity of Slag and Its Application on the Dissolution of Al2O3, ZrO2 and SiO2 Inclusions in CaO–Al2O3–SiO2 Slag. Metallurgical and Materials Transactions B, 2023, 54(3): 1314. DOI:10.1007/s11663-023-02763-y |
22. | Minghui Wu, Changyu Ren, Ying Ren, et al. In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel. Metallurgical and Materials Transactions B, 2023, 54(3): 1159. DOI:10.1007/s11663-023-02751-2 |
23. | Changyu Ren, Caide Huang, Lifeng Zhang, et al. In situ observation of the dissolution kinetics of Al2O3 particles in CaO-Al2O3-SiO2 slags using laser confocal scanning microscopy. International Journal of Minerals, Metallurgy and Materials, 2023, 30(2): 345. DOI:10.1007/s12613-021-2347-6 |
24. | Hongliang Zhao, Jingqi Wang, Fengqin Liu, et al. Flow zone distribution and mixing time in a Peirce—Smith copper converter. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 70. DOI:10.1007/s12613-020-2196-8 |
25. | Lingxiao Cui, Limei Cheng, Ying Ren, et al. Effect of Cerium on the Interaction between a Si–Mn‐Killed Steel and a MgO‐Based Refractory. steel research international, 2022, 93(10) DOI:10.1002/srin.202200104 |
26. | Yubao Liu, Jujin Wang, Lifeng Zhang, et al. Laboratory investigation on quantitative effect of ladle filler sands on the cleanliness of a bearing steel. Metallurgical Research & Technology, 2022, 119(2): 204. DOI:10.1051/metal/2022018 |
27. | Yubao Liu, Lifeng Zhang, Gong Cheng, et al. Effect of lining refractory and high-basicity slag on non-metallic inclusions in a high carbon Al-killed steel. Metallurgical Research & Technology, 2022, 119(4): 414. DOI:10.1051/metal/2022058 |
28. | Jie Liu, Bin Li, Yuanping Jia, et al. Slag resistance mechanism of CaO·6Al2O3 refractory and its effect on inclusions of aluminum deoxidized steel. International Journal of Applied Ceramic Technology, 2022, 19(6): 3323. DOI:10.1111/ijac.14156 |
29. | An-jun Xu, Yan-ping Bao. Editorial for special issue on metallurgical process engineering and intelligent manufacturing. International Journal of Minerals, Metallurgy and Materials, 2021, 28(8): 1249. DOI:10.1007/s12613-021-2333-z |
30. | Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_14 |
31. | Jujin Wang, Lifeng Zhang. TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-50349-8_93 |
32. | Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_15 |
33. | Jujin Wang, Yuexin Zhang, Binyu Lyu, et al. Materials Processing Fundamentals 2023. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-22657-1_11 |
34. | Lifeng Zhang, Sridhar Seetharaman, Guocheng Wang. Treatise on Process Metallurgy. DOI:10.1016/B978-0-323-85480-1.00038-5 |