Zhen He, Jiaming Liu, Yuqian Wei , Yunfei Song , Wuxin Yang, Aobo Yang, Yuxin Wang,  and Bo Li , Polypyrrole-coated triple-layer yolkshell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2954-0
Cite this article as:
Zhen He, Jiaming Liu, Yuqian Wei , Yunfei Song , Wuxin Yang, Aobo Yang, Yuxin Wang,  and Bo Li , Polypyrrole-coated triple-layer yolkshell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2954-0
Research Article

Polypyrrole-coated triple-layer yolkshell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries

+ Author Affiliations
  • Received: 22 February 2024Revised: 31 May 2024Accepted: 6 June 2024Available online: 12 June 2024
  • Iron oxide (Fe2O3) emerges as a highly attractive anode candidate among rapidly expanding energy storage market. Nonetheless, its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life. We pioneer an approach for preparing high-performance Fe2O3 anode materials, by innovatively synthesizing a triple-layer yolkshell Fe2O3 uniformly coated with a conductive polypyrrole layer (Fe2O3@Ppy-TLY). The uniform polypyrrole coating enhances the material's electrical conductivity and maintains structure stability through charge/discharge process. In the uses as lithium-ion battery electrodes, Fe2O3@Ppy-TLY demonstrates high reversible specific capacity (maintaining a discharge capacity of 1375.11 mAh·g-1 after 500 cycles at 1 C), exceptional cycling stability (retaining the steady charge-discharge performance at 544.33 mAh·g-1 after 6000 ultrafast charge/discharge cycles at a 10 C current density), and outstanding high current charge-discharge performance (retaining a reversible capacity of 156.75 mAh·g-1 after 10000 cycles at 15 C), thereby exhibiting superior lithium storage performance. This study introduces innovative advancements for Fe2O3 anode design, aiming to enhance its performance in energy storage fields.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(176) PDF Downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return