Mei Zhang, Wenhao Li, Yangfei Chen, Yang Jiang, Xiaofei Guo, and Han Dong, Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2963-z
Cite this article as:
Mei Zhang, Wenhao Li, Yangfei Chen, Yang Jiang, Xiaofei Guo, and Han Dong, Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2963-z
Research Article

Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel

+ Author Affiliations
  • In this study, the microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel (Fe–0.10C–5Mn) was investigated during uniaxial tensile testing. In-situ observations under scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms. These findings were discussed with the local strain measurements via digital image correlation. The results indicated that Lüders band formation in the steel was limited to 1.5% strain, which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite (RA), which led to localized stress concentrations and strain hardening and further retardation of yielding. The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin–Le Chatelier effect. The volume fraction of RA gradually decreased from 26.8% to 8.2% prior to fracture. In the late deformation stage, fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
  • loading
  • [1]
    S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
    [2]
    H. Xu, L.J. Zhou, W.L. Wang, and Y. Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2173. doi: 10.1007/s12613-023-2818-z
    [3]
    B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
    [4]
    Y. Ma, R. Zheng, Z.Y. Gao, et al., Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 847. doi: 10.1007/s12613-021-2282-6
    [5]
    M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, and J. Han, Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels, Mater. Sci. Eng. A, 752(2019), p. 43. doi: 10.1016/j.msea.2019.02.091
    [6]
    W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6661. doi: 10.1016/j.msea.2011.05.039
    [7]
    M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao, and P.D. Hodgson, Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Mater. Sci. Eng. A, 653(2016), p. 35. doi: 10.1016/j.msea.2015.11.103
    [8]
    S. Lee and B.C. De Cooman, Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel, Metall. Mater. Trans. A, 45(2014), No. 13, p. 6039. doi: 10.1007/s11661-014-2540-6
    [9]
    Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
    [10]
    S.P. Neog, A. Lodh, A. Karmakar, et al., Insights into the stability of retained austenite during wear, Philos. Mag., 103(2023), No. 3, p. 203. doi: 10.1080/14786435.2022.2139421
    [11]
    M.J. Zhao, L.H. Jiang, C.M. Li, L. Huang, C.Y. Sun, J.J. Li, and Z.H. Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 323. doi: 10.1007/s12613-023-2736-0
    [12]
    J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, and W. Xu, Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling, Mater. Sci. Eng. A, 855(2022), art. No. 143904. doi: 10.1016/j.msea.2022.143904
    [13]
    X.G. Wang and M.X. Huang, Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel, J. Iron Steel Res. Int., 24(2017), No. 11, p. 1073. doi: 10.1016/S1006-706X(17)30156-5
    [14]
    M. Callahan, O. Hubert, F. Hild, A. Perlade, and J.H. Schmitt, Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels, Mater. Sci. Eng. A, 704(2017), p. 391. doi: 10.1016/j.msea.2017.08.042
    [15]
    W.Q. Liu and J.H. Lian, Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 854. doi: 10.1007/s12613-021-2250-1
    [16]
    B.H. Sun, N. Vanderesse, F. Fazeli, et al., Discontinuous strain-induced martensite transformation related to the Portevin–Le Chatelier effect in a medium manganese steel, Scripta Mater., 133(2017), p. 9. doi: 10.1016/j.scriptamat.2017.01.022
    [17]
    F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, and H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, Int. J. Plast., 103(2018), p. 188. doi: 10.1016/j.ijplas.2018.01.010
    [18]
    L.P. Tang, P.F. Wei, Z.L. Hu, and Q. Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 539. doi: 10.1007/s12613-023-2758-7
    [19]
    F. Yang, J. Zhou, Y. Han, P. Liu, H.W. Luo, and H. Dong, A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation, Mater. Lett., 258(2020), art. No. 126804. doi: 10.1016/j.matlet.2019.126804
    [20]
    S. Yan, T.L. Li, T.S. Liang, J.Q. Chen, Y. Zhao, and X.H. Liu, By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously, Mater. Sci. Eng. A, 758(2019), p. 79. doi: 10.1016/j.msea.2019.05.012
    [21]
    H.S. Wang, Y.X. Zhang, G. Yuan, et al., Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel, Mater. Sci. Eng. A, 737(2018), p. 176. doi: 10.1016/j.msea.2018.09.045
    [22]
    Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands, Mater. Sci. Eng. A, 679(2017), p. 230. doi: 10.1016/j.msea.2016.10.042
    [23]
    J. Wu, Y. Hovanski, and M. Miles, Digital image correlation characterization and formability analysis of aluminum alloy TWB during forming, Materials, 15(2022), No. 15, art. No. 5291. doi: 10.3390/ma15155291
    [24]
    T. Wang, J. Hu, and R.D.K. Misra, Microstructure evolution and strain behavior of a medium Mn TRIP/TWIP steel for excellent combination of strength and ductility, Mater. Sci. Eng. A, 753(2019), p. 99. doi: 10.1016/j.msea.2019.03.021
    [25]
    B.H. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, The influence of silicon additions on the deformation behavior of austenite–ferrite duplex medium manganese steels, Acta Mater., 148(2018), p. 249. doi: 10.1016/j.actamat.2018.02.005
    [26]
    P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
    [27]
    C. Wang, W.Q. Cao, J. Shi, C.X. Huang, and H. Dong, Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel, Mater. Sci. Eng. A, 562(2013), p. 89. doi: 10.1016/j.msea.2012.11.044
    [28]
    X.G. Wang, L. Wang, and M.X. Huang, Kinematic and thermal characteristics of Lüders and Portevin–Le Châtelier bands in a medium Mn transformation-induced plasticity steel, Acta Mater., 124(2017), p. 17. doi: 10.1016/j.actamat.2016.10.069
    [29]
    E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, and B.C. De Cooman, Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning, Acta Mater., 135(2017), p. 112. doi: 10.1016/j.actamat.2017.06.014
    [30]
    M. Zhang, W.J. Wang, B.D. Zhang, Q.Y. Cen, and J. Liu, Influence of pre-straining on the low-cycle fatigue performance of Fe–0.1C–5Mn medium manganese steel, Int. J. Fatigue, 165(2022), art. No. 107186. doi: 10.1016/j.ijfatigue.2022.107186
    [31]
    K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
    [32]
    B.H. Sun, D. Palanisamy, D. Ponge, et al., Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite, Acta Mater., 164(2019), p. 683. doi: 10.1016/j.actamat.2018.11.029
    [33]
    B.V. Narasimha Rao and G. Thomas, Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness, Metall. Trans. A, 11(1980), No. 3, p. 441. doi: 10.1007/BF02654568
    [34]
    E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite stabilization through manganese enrichment, Scripta Mater., 64(2011), No. 2, p. 185. doi: 10.1016/j.scriptamat.2010.09.040
    [35]
    J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels, Metall. Mater. Trans. A, 36(2005), No. 2, p. 421. doi: 10.1007/s11661-005-0313-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(367) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return