Junping Shen, Chang Liu, Muhammad Dilawer Hayat, Jianan Chen, Hanqing Tian, Fusheng Xin, Gang Chen, Fei Yang, Mingli Qin, and Xuanhui Qu, Oxygen variation in titanium powder and metal injection molding, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp.2706-2713. https://dx.doi.org/10.1007/s12613-024-2970-0
Cite this article as: Junping Shen, Chang Liu, Muhammad Dilawer Hayat, Jianan Chen, Hanqing Tian, Fusheng Xin, Gang Chen, Fei Yang, Mingli Qin, and Xuanhui Qu, Oxygen variation in titanium powder and metal injection molding, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp.2706-2713. https://dx.doi.org/10.1007/s12613-024-2970-0
Research Article

Oxygen variation in titanium powder and metal injection molding

Author Affilications
  • Corresponding author:

    Gang Chen E-mail: gche098@ustb.edu.cn

  • *These authors contributed equally to this work.

  • The control of oxygen is paramount in achieving high-performance titanium (Ti) parts by powder metallurgy such as metal injection molding (MIM). In this study, we purposely selected the Ti and Ti–6Al–4V powders as the reference materials since these two are the most representative Ti materials in the industry. Herein, hydride–dehydride (HDH) Ti powders were pre-oxidized to examine the effect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature. The results indicate that the thickness and Ti oxide level (Ti0 → Ti4+) of the oxide layer on the HDH Ti powders increased as the oxygen content increased, leading to the transition of color appearance from grey, brown to blue. This work aids in the powder feedstock selection at the initial stage in powder metallurgy. In addition, the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized (GA) Ti–6Al–4V powders. Particularly, the oxygen variation in the form of oxide layer, the change of oxygen content in the powders, and the relevant parts were investigated during the processes of kneading, injection, debinding, and sintering. The oxygen variation was mainly concentrated in the sintering stage, and the content increased with the increase of sintering temperature. The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen content. This work provides a piece of valuable information on oxygen detecting, control, and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy.
  • This study was financially supported by the National Key Research and Development Program of China (No. 2021YFB3701900), the National Natural Science Foundation Program of China (No. 51971036), and the Open Research Fund of State Key Laboratory of Mesoscience and Engineering (No. MESO-23-D07).

    Xuanhui Qu is an editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors have no competing interests to declare that are relevant to the content of this article.

  • [1]
    W.S. Lee and C.F. Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures, Mater. Sci. Eng. A, 241(1998), No. 1-2, p. 48. DOI: 10.1016/S0921-5093(97)00471-1
    [2]
    X.W. Ji, P.T. Liu, J.C. Tang, et al., Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli, Trans. Nonferrous Met. Soc. China, 31(2021), No. 12, p. 3821. DOI: 10.1016/S1003-6326(21)65767-9
    [3]
    J.P. Zheng, L.J. Chen, D.Y. Chen, C.S. Shao, M.F. Yi, and B. Zhang, Effects of pore size and porosity of surface-modified porous titanium implants on bone tissue ingrowth, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2534. DOI: 10.1016/S1003-6326(19)65161-7
    [4]
    G.Z. Qiu and Y.F. Guo, Current situation and development trend of titanium metal industry in China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 599. DOI: 10.1007/s12613-022-2455-y
    [5]
    G.C. Obasi, O.M. Ferri, T. Ebel, and R. Bormann, Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3929. DOI: 10.1016/j.msea.2010.02.070
    [6]
    S. Sun, M. Brandt, and M.S. Dargusch, Characteristics of cutting forces and chip formation in machining of titanium alloys, Int. J. Mach. Tools Manuf., 49(2009), No. 7-8, p. 561. DOI: 10.1016/j.ijmachtools.2009.02.008
    [7]
    Y. Gao, C. Zhang, J.Z. Zhang, and X. Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1426. DOI: 10.1007/s12613-023-2809-0
    [8]
    L. Lan, R.Y. Xin, X.Y. Jin, S. Gao and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780. DOI: 10.1007/s12613-021-2322-2
    [9]
    F.H.S. Froes, Advances in titanium metal injection molding, Powder Metall. Met. Ceram., 46(2007), No. 5, p. 303.
    [10]
    R.M. German, Progress in titanium metal powder injection molding, Materials, 6(2013), No. 8, p. 3641. DOI: 10.3390/ma6083641
    [11]
    A. Dehghan-Manshadi, M. Bermingham, M.S. Dargusch, D.H. StJohn, and M. Qian, Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technol., 319(2017), p. 289. DOI: 10.1016/j.powtec.2017.06.053
    [12]
    E. Ergül, H. Özkan Gülsoy, and V. Günay, Effect of sintering parameters on mechanical properties of injection moulded Ti–6Al–4V alloys, Powder Metall., 52(2009), No. 1, p. 65. DOI: 10.1179/174329008X271691
    [13]
    L. Liu, X.D. Wang, X. Li, X.T. Qi, and X.H. Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1021. DOI: 10.1007/s12613-017-1491-5
    [14]
    S. Virdhian, T. Osada, H.G. Kang, F. Tsumori, and H. Miura, Evaluation and analysis of distortion of complex shaped Ti–6Al–4V compacts by metal injection molding process, Key Eng. Mater., 520(2012), p. 187. DOI: 10.4028/www.scientific.net/KEM.520.187
    [15]
    Y.J. Liu, Y. Pan, J.Z. Sun, et al., Metal injection molding of high-performance Ti composite using hydride-dehydride (HDH) powder, J. Manuf. Process., 89(2023), p. 328. DOI: 10.1016/j.jmapro.2023.01.064
    [16]
    X.M. Gan, S.F. Li, S.Y. Xiao, and Y.F. Yang, Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 413. DOI: 10.1007/s12613-023-2774-7
    [17]
    H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Prog. Mater. Sci., 26(1981), No. 2-4, p. 123. DOI: 10.1016/0079-6425(81)90001-3
    [18]
    T. Ebel, O. Milagres Ferri, W. Limberg, M. Oehring, F. Pyczak, and F.P. Schimansky, Metal injection moulding of titanium and titanium-aluminides, Key Eng. Mater., 520(2012), p. 153. DOI: 10.4028/www.scientific.net/KEM.520.153
    [19]
    H. Wang, Q. Chao, X.Y. Cui, et al., Introducing C phase in additively manufactured Ti–6Al–4V: A new oxygen-stabilized face-centred cubic solid solution with improved mechanical properties, Mater. Today, 61(2022), p. 11. DOI: 10.1016/j.mattod.2022.10.026
    [20]
    M. Yan, M.S. Dargusch, T. Ebel, and M. Qian, A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility, Acta Mater., 68(2014), p. 196. DOI: 10.1016/j.actamat.2014.01.015
    [21]
    A. Amherd Hidalgo, T. Ebel, R. Frykholm, E. Carreño-Morelli, and F. Pyczak, High-oxygen MIM Ti–6Al–7Nb: Microstructure, tensile and fatigue properties, Mater. Today Commun., 34(2023), art. No. 104982. DOI: 10.1016/j.mtcomm.2022.104982
    [22]
    S. Banerjee and C.J. Joens, Sintering powder metal injection molded (MIM) titanium alloys: In vacuum or argon?, Key Eng. Mater., 704(2016), p. 113. DOI: 10.4028/www.scientific.net/KEM.704.113
    [23]
    F.S. Xin, W.W. Ding, Q.Y. Tao, et al., Effect and evolution of oxide film in the HDH-Ti powder surface on densification behavior during sintering, Metall. Mater. Trans. A, 53(2022), No. 4, p. 1164. DOI: 10.1007/s11661-022-06598-1
    [24]
    Q.Y. Tao, Z.W. Wang, G. Chen, et al., Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off, Addit. Manuf., 34(2020), art. No. 101198.
    [25]
    Q.Y. Tao, W.W. Ding, G. Chen, X.H. Qu, and M.L. Qin, Towards an atomic-scale understanding of oxide film in the Ti powder surface, Scripta Mater., 210(2022), art. No. 114471. DOI: 10.1016/j.scriptamat.2021.114471
    [26]
    W.W. Ding, Z.W. Wang, G. Chen, et al., Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization, Corros. Sci., 178(2021), art. No. 109080. DOI: 10.1016/j.corsci.2020.109080
    [27]
    E. Hryha, R. Shvab, M. Bram, M. Bitzer, and L. Nyborg, Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition, Appl. Surf. Sci., 388(2016), p. 294. DOI: 10.1016/j.apsusc.2016.01.046
    [28]
    S. Mendis, W. Xu, H.P. Tang, et al., Characteristics of oxide films on Ti–(10–75)Ta alloys and their corrosion performance in an aerated Hank’s balanced salt solution, Appl. Surf. Sci., 506(2020), art. No. 145013. DOI: 10.1016/j.apsusc.2019.145013
    [29]
    M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257(2010), No. 3, p. 887. DOI: 10.1016/j.apsusc.2010.07.086
    [30]
    R. Williams, M. Bilton, N. Harrison, and P. Fox, The impact of oxidised powder particles on the microstructure and mechanical properties of Ti–6Al–4V processed by laser powder bed fusion, Addit. Manuf., 46(2021), art. No. 102181.
    [31]
    M.V. Diamanti, B. Del Curto, and M. Pedeferri, Interference colors of thin oxide layers on titanium, Color Res. Appl., 33(2008), No. 3, p. 221. DOI: 10.1002/col.20403
    [32]
    M.H. Freeman, Optics, Elsevier, Amsterdam, 1990.
    [33]
    E.M. Assim, Optical constants of titanium monoxide TiO thin films, J. Alloys Compd., 465(2008), No. 1-2, p. 1. DOI: 10.1016/j.jallcom.2007.10.059
    [34]
    M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, and M.A. Afifi, Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films, Appl. Surf. Sci., 252(2006), No. 23, p. 8163. DOI: 10.1016/j.apsusc.2005.10.040
    [35]
    J.R. DeVore, Refractive indices of rutile and sphalerite, J. Opt. Soc. Am., 41(1951), No. 6, p. 416. DOI: 10.1364/JOSA.41.000416
    [36]
    P.A. Lee, K.F. Stork, B.L. Maschhoff, K.W. Nebesny, and N.R. Armstrog, Oxide formation on Fe and Ti thin films and on Fe thin films modified with ultrathin layers of Ti, Surf. Interface Anal., 17(1991), No. 1, p. 48. DOI: 10.1002/sia.740170112
    [37]
    I. Vaquila, M.C.G. Passeggi, and J. Ferrón, Temperature effects in the early stages of titanium oxidation, Appl. Surf. Sci., 93(1996), No. 3, p. 247. DOI: 10.1016/0169-4332(95)00334-7
    [38]
    C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, et al., Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction, Acta Mater., 59(2011), No. 16, p. 6318. DOI: 10.1016/j.actamat.2011.06.042
    [39]
    E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Oxide dissolution and oxygen diffusion in solid-state recycled Ti–6Al–4V: Numerical modeling, verification by nanoindentation, and effects on grain growth and recrystallization, Metall. Mater. Trans. A, 48(2017), No. 12, p. 5978. DOI: 10.1007/s11661-017-4358-5
    [40]
    S. Arrhenius, Über die Reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren, Z. Phys. Chem., 4U(1889), No. 1, p. 226. DOI: 10.1515/zpch-1889-0416
    [41]
    Z. Liu and G. Welsch, Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile, Metall. Trans. A, 19(1988), No. 4, p. 1121. DOI: 10.1007/BF02628396
  • Related Articles

    [1]C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, C. A. Rodríguez-González. Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1467-1476. DOI: 10.1007/s12613-019-1863-0
    [2]Chun-fu Kuang, Zhi-wang Zheng, Min-li Wang, Quan Xu, Shen-gen Zhang. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1379-1383. DOI: 10.1007/s12613-017-1530-2
    [3]Deepak Pathania, Rishu Katwal, Harpreet Kaur. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(3): 358-371. DOI: 10.1007/s12613-016-1245-9
    [4]Lin-lin Yuan, Jing-tao Han, Jing Liu, Dong-bin Wei, Mehari Zelalem Abathun. Titanium effect on the microstructure and properties of laminated high boron steel plates [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(5): 492-499. DOI: 10.1007/s12613-015-1098-7
    [5]Xiao-qiang Li, Zi-yang Li, Yong-quan Ye, Ke Hu. Preparation of in situ and ex situ reinforced Fe-10Cr-1Cu-1Ni-1Mo-2C containing NbC particles by milling and hot pressing [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(2): 157-166. DOI: 10.1007/s12613-015-1056-4
    [6]Zahra Hejri, Ali Akbar Seifkordi, Ali Ahmadpour, Seyed Mojtaba Zebarjad, Abdolmajid Maskooki. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 1001-1011. DOI: 10.1007/s12613-013-0827-z
    [7]Ali Rasooli, Mehdi Divandari, Hamid Reza Shahverdi, Mohammad Ali Boutorabi. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(2): 165-172. DOI: 10.1007/s12613-012-0533-2
    [8]Jun Li, Lian Zhou, Zuo-chen Li. Microstructures and mechanical properties of a new titanium alloy for surgical implant application [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 185-191. DOI: 10.1007/s12613-010-0211-1
    [9]Lianfeng Guo, Wenguang Zhang, Chengtao Wang. Preparation and crystallization control of nanoparticle hydroxyapatlte [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(5): 449-454.
    [10]Benfu Hu, Shunmi Peng, H Takahashi. Irradiation Damage of Oxide Dispersion Strengthened Ferritic Steel after Recrystallization [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(3): 160-164.
  • Cited by

    Periodical cited type(34)

    1. Chunjie She, Guojun Chen, Xingwei Pei, et al. In Situ Observation of the Desulfurization of the Molten Steel by CaO–Al2O3 Desulfurizers. Metallurgical and Materials Transactions B, 2025. DOI:10.1007/s11663-025-03500-3
    2. N. Preisser, Y. Wang, J. Cejka, et al. Application of high-temperature confocal scanning laser microscopy to investigate non-metallic inclusions in steel: a review. Journal of Iron and Steel Research International, 2025, 32(2): 334. DOI:10.1007/s42243-024-01413-0
    3. Weijian Wang, Yuan Gao, Ying Ren, et al. Observation of Initial Interfacial Reaction between High Aluminum Molten Steel and CaO–Al2O3 Inclusion at 1873 K Using Laser Confocal Scanning Microscopy and Micro‐Computerized Tomography. steel research international, 2025, 96(1) DOI:10.1002/srin.202300803
    4. Yujie Cheng, Wei Chen, Jujin Wang, et al. Reaction Mechanism between MgO and MgOC Lining Refractories and a High‐Carbon Al‐Killed Steel. steel research international, 2025, 96(1) DOI:10.1002/srin.202400364
    5. Yi Wang, Jian-xun Fu, Deepoo Kumar, et al. State-of-art of in situ observations of inclusion agglomeration at steel/Ar and steel/slag interfaces: a review of recent development on experimental and theoretical studies. Journal of Iron and Steel Research International, 2025, 32(2): 315. DOI:10.1007/s42243-024-01410-3
    6. Bin Guo, Jujin Wang, Lifeng Zhang. Dissolution Kinetics of Al2O3, CaAl4O7, and MgAl2O4 Inclusions Into CaO–Al2O3–SiO2 Slags with Varying MgO Content. Metallurgical and Materials Transactions B, 2025, 56(1): 1029. DOI:10.1007/s11663-024-03412-8
    7. Yujie Cheng, Jujin Wang, Lifeng Zhang. Reaction mechanism between MgO and MgO–C lining refractories and an ultra-low-carbon Al-killed steel. Metallurgical Research & Technology, 2025, 122(1): 103. DOI:10.1051/metal/2024093
    8. Yujie Cheng, Shengchao Duan, Lifeng Zhang. Comparison Study of the Effect of MgO, MgO‐CaO, MgO‐Al2O3‐C, and MgO‐C Refractories on Cleanliness of a SiMn‐Killed Steel. steel research international, 2025. DOI:10.1002/srin.202400788
    9. Guojun Chen, Ying Ren, Minghui Wu, et al. <i>In-Situ</i> Observation of the Modification Behavior of Alumina Inclusions in a Calcium-treated Steel. ISIJ International, 2024, 64(8): 1263. DOI:10.2355/isijinternational.ISIJINT-2024-049
    10. Jujin Wang, Hong Liu, Lifeng Zhang. Modeling Study on the Evolution of Slag-Entrained Inclusions Containing La2O3 in a Calcium-Treated Aluminum-Killed Steel. Metallurgical and Materials Transactions B, 2024, 55(4): 2673. DOI:10.1007/s11663-024-03131-0
    11. Pengfei Wu, Xinyue Liu, Xiaoming Liu, et al. Effect of Industrial Byproduct Gypsum on the Mechanical Properties and Stabilization of Hazardous Elements of Cementitious Materials: A Review. Materials, 2024, 17(17): 4183. DOI:10.3390/ma17174183
    12. Fu-bin Gao, Fu-ming Wang, Xiang Zhang, et al. Effect of Al content in molten steel on interaction between MgO–C refractory and SPHC steel. Journal of Iron and Steel Research International, 2024, 31(4): 838. DOI:10.1007/s42243-023-01107-z
    13. Qiang Wang, Chong Tan, Chang Liu, et al. Elaboration of A Coupled Numerical Model for Predicting Magnesia Refractory Damage Behavior in High-Temperature Reactor. Metallurgical and Materials Transactions B, 2024, 55(1): 168. DOI:10.1007/s11663-023-02947-6
    14. Chunjie She, Kaiyu Peng, Yu Sun, et al. Kinetic Model of Desulfurization During RH Refining Process. Metallurgical and Materials Transactions B, 2024, 55(1): 92. DOI:10.1007/s11663-023-02942-x
    15. Jingcheng Wang, Zhentong Liu, Wei Chen, et al. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change. International Journal of Minerals, Metallurgy and Materials, 2024, 31(7): 1540. DOI:10.1007/s12613-024-2909-5
    16. Jujin Wang, Zi Ye, Lifeng Zhang. Fluid flow, slag entrainment, and composition evolution of slag inclusions during vacuum degassing refining. Metallurgical Research & Technology, 2024, 121(6): 605. DOI:10.1051/metal/2024075
    17. Chao Gu, Ziyu Lyu, Qin Hu, et al. Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 744. DOI:10.1007/s12613-022-2588-z
    18. Ying Ren, Weijian Wang, Wen Yang, et al. Modification of Non-metallic Inclusions in Steel by Calcium Treatment: A Review. ISIJ International, 2023, 63(12): 1927. DOI:10.2355/isijinternational.ISIJINT-2023-143
    19. Shuai Hao, Guoping Luo, Yuanyuan Lu, et al. Thermodynamic Analysis of Mineral Phase Composition of Steel Slag System. Minerals, 2023, 13(5): 643. DOI:10.3390/min13050643
    20. Yunsong Liu, Enhui Wang, Linchao Xu, et al. Synthesis of CA6/AlON composite with enhanced slag resistance. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 756. DOI:10.1007/s12613-022-2435-2
    21. Lan Gou, Hong Liu, Ying Ren, et al. Concept of Inclusion Capacity of Slag and Its Application on the Dissolution of Al2O3, ZrO2 and SiO2 Inclusions in CaO–Al2O3–SiO2 Slag. Metallurgical and Materials Transactions B, 2023, 54(3): 1314. DOI:10.1007/s11663-023-02763-y
    22. Minghui Wu, Changyu Ren, Ying Ren, et al. In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel. Metallurgical and Materials Transactions B, 2023, 54(3): 1159. DOI:10.1007/s11663-023-02751-2
    23. Changyu Ren, Caide Huang, Lifeng Zhang, et al. In situ observation of the dissolution kinetics of Al2O3 particles in CaO-Al2O3-SiO2 slags using laser confocal scanning microscopy. International Journal of Minerals, Metallurgy and Materials, 2023, 30(2): 345. DOI:10.1007/s12613-021-2347-6
    24. Hongliang Zhao, Jingqi Wang, Fengqin Liu, et al. Flow zone distribution and mixing time in a Peirce—Smith copper converter. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 70. DOI:10.1007/s12613-020-2196-8
    25. Lingxiao Cui, Limei Cheng, Ying Ren, et al. Effect of Cerium on the Interaction between a Si–Mn‐Killed Steel and a MgO‐Based Refractory. steel research international, 2022, 93(10) DOI:10.1002/srin.202200104
    26. Yubao Liu, Jujin Wang, Lifeng Zhang, et al. Laboratory investigation on quantitative effect of ladle filler sands on the cleanliness of a bearing steel. Metallurgical Research & Technology, 2022, 119(2): 204. DOI:10.1051/metal/2022018
    27. Yubao Liu, Lifeng Zhang, Gong Cheng, et al. Effect of lining refractory and high-basicity slag on non-metallic inclusions in a high carbon Al-killed steel. Metallurgical Research & Technology, 2022, 119(4): 414. DOI:10.1051/metal/2022058
    28. Jie Liu, Bin Li, Yuanping Jia, et al. Slag resistance mechanism of CaO·6Al2O3 refractory and its effect on inclusions of aluminum deoxidized steel. International Journal of Applied Ceramic Technology, 2022, 19(6): 3323. DOI:10.1111/ijac.14156
    29. An-jun Xu, Yan-ping Bao. Editorial for special issue on metallurgical process engineering and intelligent manufacturing. International Journal of Minerals, Metallurgy and Materials, 2021, 28(8): 1249. DOI:10.1007/s12613-021-2333-z
    30. Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_14
    31. Jujin Wang, Lifeng Zhang. TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-50349-8_93
    32. Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_15
    33. Jujin Wang, Yuexin Zhang, Binyu Lyu, et al. Materials Processing Fundamentals 2023. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-22657-1_11
    34. Lifeng Zhang, Sridhar Seetharaman, Guocheng Wang. Treatise on Process Metallurgy. DOI:10.1016/B978-0-323-85480-1.00038-5

    Other cited types(0)

Catalog

    Figures(7)  /  Tables(3)

    Share Article

    Article Metrics

    Article views (931) PDF downloads (26) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return