Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian,  and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2972-y
Cite this article as:
Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian,  and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2972-y
Research Article

TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption

+ Author Affiliations
  • Facing the complex variable high-temperature environment, electromagnetic wave (EMW) absorbing materials maintaining high stability and satisfying absorbing properties is essential. This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe2N/C composite materials, which were prepared using electrostatic spinning followed by a high-temperature nitridation process. The TiN/Fe2N/C fibers constructed a well-developed conductive network that generates considerable conduction loss. The heterogeneous interfaces between different components generated a significant level of interfacial polarization. Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching, the TiN/Fe2N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range (293–453 K). Moreover, TiN/Fe2N/C-15 achieved a minimum reflection loss (RL) of –48.01 dB and an effective absorption bandwidth (EAB) of 3.64 GHz at 2.1 mm and 373 K. This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
  • loading
  • Supplementary Information-s12613-024-2972-y.docx
  • [1]
    J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024), art. No. 2316722.
    [2]
    Y. Zhou, H.P. Wang, D. Wang, et al., Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 474. doi: 10.1007/s12613-022-2499-z
    [3]
    Z.H. Zhao, Y.C. Qing, L. Kong, et al., Advancements in microwave absorption motivated by interdisciplinary research, Adv. Mater., 36(2024), No. 4, art. No. 2304182. doi: 10.1002/adma.202304182
    [4]
    F.Z. Mao, X.K. Fan, L. Long, Y. Li, H. Chen, and W. Zhou, Constructing 3D hierarchical CNTs/VO2 composite microspheres with superior electromagnetic absorption performance, Ceram. Int., 49(2023), No. 11, p. 16924. doi: 10.1016/j.ceramint.2023.02.054
    [5]
    P.F. Yin, D. Lan, C.F. Lu, et al., Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection, J. Mater. Sci. Technol., 204(2025), p. 204. doi: 10.1016/j.jmst.2024.04.007
    [6]
    P.B. Liu, Y.R. Li, H.X. Xu, et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption, ACS Nano, 18(2024), No. 1, p. 560. doi: 10.1021/acsnano.3c08569
    [7]
    L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
    [8]
    Y.L. Wang, G.S. Wang, X.J. Zhang, and C. Gao, Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading, J. Mater. Sci. Technol., 103(2022), p. 34. doi: 10.1016/j.jmst.2021.06.021
    [9]
    H.X. Si, Y. Zhang, Y.H. Liu, et al., Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 206(2025), p. 211. doi: 10.1016/j.jmst.2024.04.011
    [10]
    H.Y. Wang, X.B. Sun, S.H. Yang, et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption, Nano Micro Lett, 13(2021), No. 1, art. No. 206. doi: 10.1007/s40820-021-00727-y
    [11]
    Z.J. Li, L.M. Zhang, and H.J. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption, Small, 20(2024), No. 11, art. No. 2305120. doi: 10.1002/smll.202305120
    [12]
    N.X. Zhai, J.H. Luo, M.W. Xiao, Y.C. Zhang, W.X. Yan, and Y. Xu, In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption, Carbon, 203(2023), p. 416. doi: 10.1016/j.carbon.2022.12.004
    [13]
    G. Chen, H.S. Liang, J.J. Yun, L.M. Zhang, H.J. Wu, and J.Y. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber, Adv. Mater., 35(2023), No. 49, art. No. 2305586. doi: 10.1002/adma.202305586
    [14]
    S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
    [15]
    N.X. Zhai, J.H. Luo, J. Mei, et al., Interface engineering of heterogeneous NiSe2-CoSe2@C@MoSe2 for high-efficient electromagnetic wave absorption, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2312237. doi: 10.1002/adfm.202312237
    [16]
    H. Tanaka, K. Nakamura, and O. Ichinokura, Accuracy improvement of magnetic hysteresis calculated by LLG equation, J. Phys. Conf. Ser., 903(2017), art. No. 012048. doi: 10.1088/1742-6596/903/1/012048
    [17]
    X. Yang, Y.P. Duan, S.Q. Li, et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance, Carbon, 188(2022), p. 376. doi: 10.1016/j.carbon.2021.12.044
    [18]
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, and J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion, Small, 14(2018), No. 29, art. No. 1800987. doi: 10.1002/smll.201800987
    [19]
    Z.Y. Jiang, H.X. Si, Y. Li, et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption, Nano Res., 15(2022), No. 9, p. 8546. doi: 10.1007/s12274-022-4674-y
    [20]
    C. Li, D. Li, S. Zhang, et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature, Nano Micro Lett, 16(2024), No. 1, art. No. 168. doi: 10.1007/s40820-024-01381-w
    [21]
    Q.Y. Wang, X.F. Wu, J. Huang, et al., Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects, J. Alloys Compd., 890(2022), art. No. 161887. doi: 10.1016/j.jallcom.2021.161887
    [22]
    G. Wang, C.F. Li, D. Estevez, et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption, Nano Micro Lett., 15(2023), No. 1, art. No. 152. doi: 10.1007/s40820-023-01123-4
    [23]
    H.X. Xu, Z.Z. He, Y.R. Wang, X.R. Ren, and P.B. Liu, Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption, Nano Res., 17(2024), No. 3, p. 1616. doi: 10.1007/s12274-023-6132-x
    [24]
    Q. Jiang, Y. Qiao, A. Uddin, F.X. Qin, L. Chen, and L.W. Wu, Tailoring electromagnetic response of three-dimensional waffle-like metacomposite based on arrangement angle of ferromagnetic microwires, Composites Part B, 247(2022), art. No. 110298. doi: 10.1016/j.compositesb.2022.110298
    [25]
    Z.X. Hou, J.M. Xue, Y.Q. Liu, et al., Bidirectional periodic pore structure Si-C-N multiphase ceramic with high thermostability and excellent microwave absorption properties over a wide temperature range, J. Eur. Ceram. Soc., 44(2024), No. 2, p. 850. doi: 10.1016/j.jeurceramsoc.2023.09.085
    [26]
    Z.Y. Jiang, Y.J. Gao, Z.H. Pan, et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 174(2024), p. 195. doi: 10.1016/j.jmst.2023.08.013
    [27]
    N.P. Zhou, L. Zhang, W.Q. Wang, et al., Stereolithographically 3D printed SiC metastructure for ultrabroadband and high temperature microwave absorption, Adv. Mater. Technol., 8(2023), No. 4, art. No. 2201222. doi: 10.1002/admt.202201222
    [28]
    L.L. Song, X.Q. Wang, Y.P. Duan, Y.Q. Wang, Z.Y. Huang, and W.Z. Xia, Designing high-performance microwave absorption materials through co-doping strategy: Experimental and theoretical insights, Mater. Res. Bull., 173(2024), art. No. 112679. doi: 10.1016/j.materresbull.2024.112679
    [29]
    H.T. Guan, Q.Y. Wang, X.F. Wu, et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Composites Part B, 207(2021), art. No. 108562. doi: 10.1016/j.compositesb.2020.108562
    [30]
    H.H. Zhu, G. Qin, W. Zhou, Y. Li, and X.B. Zhou, Constructing flake-like ternary rare earth Pr3Si2C2 ceramic on SiC whiskers to enhance electromagnetic wave absorption properties, Ceram. Int., 50(2024), No. 1, p. 134. doi: 10.1016/j.ceramint.2023.10.050
    [31]
    Y.P. Shi, D. Li, H.X. Si, Z.Y. Jiang, M.Y. Li, and C.H. Gong, TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 130(2022), p. 249. doi: 10.1016/j.jmst.2022.04.050
    [32]
    Y. Zhang, M.Y. Li, D. Li, et al., TiN-based materials for multispectral electromagnetic wave absorption, J. Electron. Mater., 52(2023), No. 6, p. 3549. doi: 10.1007/s11664-023-10280-6
    [33]
    Y.P. Shi, D. Li, H.X. Si, Y.P. Duan, C.H. Gong, and J.W. Zhang, TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption, J. Alloys Compd., 918(2022), art. No. 165603. doi: 10.1016/j.jallcom.2022.165603
    [34]
    C.P. Li, D. Li, L. Zhang, et al., Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature, Nano Res., 16(2023), No. 2, p. 3570.
    [35]
    R. Liu, N. Lun, Y.X. Qi, et al., Microwave absorption properties of TiN nanoparticles, J. Alloys Compd., 509(2011), No. 41, p. 10032. doi: 10.1016/j.jallcom.2011.08.022
    [36]
    Y. Cui, C.J. Li, R.K. Li, et al., Effect of synthesis temperatures on the composition, microstructure, and microwave absorption properties of titanium nitride porous nanofibers prepared using ammonia reduction nitridation process, J. Mater. Sci. Mater. Electron., 34(2023), No. 12, art. No. 1036. doi: 10.1007/s10854-023-10471-1
    [37]
    Y.H. Zhang, H.J. Meng, Y.P. Shi, et al., TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption, Composites Part B, 193(2020), art. No. 108028. doi: 10.1016/j.compositesb.2020.108028
    [38]
    C.P. Li, L. Zhang, S. Zhang, et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum, Nano Res., 17(2024), No. 3, p. 1666. doi: 10.1007/s12274-023-6350-2
    [39]
    X. Zhang, X.L. Tian, N. Wu, et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption, Sci. Adv., 10(2024), No. 11, art. No. eadl6498. doi: 10.1126/sciadv.adl6498
    [40]
    X. Zhang, X.L. Tian, Y.T. Qin, et al., Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption, ACS Nano, 17(2023), No. 13, p. 12510. doi: 10.1021/acsnano.3c02170
    [41]
    M.Y. Gong, J. Gao, D.P. Shen, P. Li, W.P. Tong, and C.Z. Liu, Electromagnetic wave absorption properties in Ku-band of magnetic iron nitrides prepared by high energy ball milling, J. Magn. Magn. Mater., 514(2020), art. No. 167246. doi: 10.1016/j.jmmm.2020.167246
    [42]
    X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, and Y.W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C, Chem. Eng. J., 381(2020), art. No. 122589. doi: 10.1016/j.cej.2019.122589
    [43]
    Y. Zhai, D.M. Zhu, S.C. Duan, and F. Luo, Novel Fe3–4N@FCI particles with improved microwave absorption and antioxidation properties prepared by surface nitridation method, Chem. Phys. Lett., 755(2020), art. No. 137803. doi: 10.1016/j.cplett.2020.137803
    [44]
    R.R. Ding, J.Z. Zhang, J. Zhang, Z.H. Li, C.Y. Wang, and M.M. Chen, Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: An additive-free anode material for lithium-ion batteries, Chem. Eng. J., 360(2019), p. 1063. doi: 10.1016/j.cej.2018.10.177
    [45]
    X.X. Huang, Z.Y. Yang, B. Dong, Y.Z. Wang, T.Y. Tang, and Y.L. Hou, In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction, Nanoscale, 9(2017), No. 24, p. 8102. doi: 10.1039/C7NR00988G
    [46]
    X.Q. Cui, X.H. Liang, J.B. Chen, W.H. Gu, G.B. Ji, and Y.W. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response, Carbon, 156(2020), p. 49. doi: 10.1016/j.carbon.2019.09.041
    [47]
    C.X. Wang, Y. Liu, Z.R. Jia, W.R. Zhao, and G.L. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption, Nano Micro Lett, 15(2022), No. 1, art. No. 13.
    [48]
    Y. Wei, Y.P. Shi, X.F. Zhang, et al., Electrospinning of lightweight TiN fibers with superior microwave absorption, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14519. doi: 10.1007/s10854-019-01823-x
    [49]
    Y.W. Lou, J.J. Liu, M. Liu, and F. Wang, Hexagonal Fe2N coupled with N-doped carbon: Crystal-plane-dependent electrocatalytic activity for oxygen reduction, ACS Catal., 10(2020), No. 4, p. 2443. doi: 10.1021/acscatal.9b03716
    [50]
    F. Wu, Z.H. Liu, T. Xiu, et al., Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption, Composites Part B, 215(2021), art. No. 108814. doi: 10.1016/j.compositesb.2021.108814
    [51]
    L.L. Xiang, A.K. Darboe, Z.H. Luo, et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 215. doi: 10.1007/s42114-023-00793-3
    [52]
    M. Zhou, J.W. Wang, S.J. Tan, and G.B. Ji, Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding, Mater. Today Phys., 31(2023), art. No. 100962. doi: 10.1016/j.mtphys.2022.100962
    [53]
    Q. Su, H.Q. Wang, Y.F. He, D.D. Liu, X.X. Huang, and B. Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 197. doi: 10.1007/s12613-023-2707-5
    [54]
    B.B. Zhan, Y.L. Hao, X.S. Qi, et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties, Nano Res., 17(2024), No. 3, p. 927. doi: 10.1007/s12274-023-6236-7
    [55]
    H.R. Yuan, B. Li, C.L. Zhu, Y. Xie, Y.J. Jiang, and Y.J. Chen, Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon, Appl. Phys. Lett., 116(2020), No. 15, art. No. 153101. doi: 10.1063/1.5143154
    [56]
    J.X. Xiao, B.B. Zhan, X.S. Qi, et al., Metal valence state modulation strategy to design core@shell hollow carbon microspheres@MoSe2/MoOx multicomponent composites for anti-corrosion and microwave absorption, Small, (2024), art. No. 2311312.
    [57]
    J.H. Wen, D. Lan, Y.Q. Wang, et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1701. doi: 10.1007/s12613-024-2881-0
    [58]
    X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 34(2024), No. 19, art. No. 2313544. doi: 10.1002/adfm.202313544
    [59]
    Q.Q. Huang, Y. Zhao, Y. Wu, et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility, Chem. Eng. J., 446(2022), art. No. 137279. doi: 10.1016/j.cej.2022.137279
    [60]
    M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.
    [61]
    Q.Q. Liang, L. Wang, X.S. Qi, et al., Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy, J. Mater. Sci. Technol., 147(2023), p. 37. doi: 10.1016/j.jmst.2022.10.069
    [62]
    B.L. Wang, Q. Wu, Y.G. Fu, and T. Liu, Yolk-shell structured Co@SiO2@Void@C nanocomposite with tunable cavity prepared by etching of SiO2 as high-efficiency microwave absorber, J. Colloid Interface Sci., 594(2021), p. 342. doi: 10.1016/j.jcis.2021.03.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(140) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return