Cite this article as: |
Lou Zhang, Shuo Li, Fu Tang, Jingkai Zhang, Yuetong Kang, Hean Zhang, and Lidong Li, Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2978-5 |
Fu Tang E-mail: tangfu@ustb.edu.cn
[1] |
Y.S. Zhang and A. Khademhosseini, Advances in engineering hydrogels, Science, 356(2017), No. 6337, art. No. eaaf3627. doi: 10.1126/science.aaf3627
|
[2] |
X.K. Lin, X.D. Huang, C.G. Zeng, et al., Poly(vinyl alcohol) hydrogels integrated with cuprous oxide–tannic acid submicroparticles for enhanced mechanical properties and synergetic antibiofouling, J. Colloid Interface Sci., 535(2019), p. 491. doi: 10.1016/j.jcis.2018.10.017
|
[3] |
Y.N. Wang, C.F. Dong, D.W. Zhang, P.P. Ren, L. Li, and X.G. Li, Preparation and characterization of a chitosan-based low-pH-sensitive intelligent corrosion inhibitor, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 998. doi: 10.1007/s12613-015-1161-4
|
[4] |
Y.W. Zheng, Y.L. Yan, L.M. Lin, et al., Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection, Acta Biomater., 142(2022), p. 113. doi: 10.1016/j.actbio.2022.02.019
|
[5] |
S. Sadeghi, J. Nourmohammadi, A. Ghaee, and N. Soleimani, Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing, Int. J. Biol. Macromol., 147(2020), p. 1239. doi: 10.1016/j.ijbiomac.2019.09.251
|
[6] |
J.M. Qian, L.J. Ji, W.J. Xu, et al., Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing, ACS Appl. Mater. Interfaces, 14(2022), No. 14, p. 16018. doi: 10.1021/acsami.2c01254
|
[7] |
Y. Li, R.Z. Fu, Z.G. Duan, C.H. Zhu, and D.D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction, Small, 18(2022), No. 18, art. No. 2200165. doi: 10.1002/smll.202200165
|
[8] |
Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, and P. Makvandi, Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo, Int. J. Mol. Sci., 22(2021), No. 5, art. No. 2531. doi: 10.3390/ijms22052531
|
[9] |
K.P. Liu, F.J. Zhang, Y. Wei, et al., Dressing blood-contacting materials by a stable hydrogel coating with embedded antimicrobial peptides for robust antibacterial and antithrombus properties, ACS Appl. Mater. Interfaces, 13(2021), No. 33, p. 38947. doi: 10.1021/acsami.1c05167
|
[10] |
L. Zamora-Mendoza, S.N. Vispo, L. De Lima, J.R. Mora, A. Machado, and F. Alexis, Hydrogel for the controlled delivery of bioactive components from extracts of Eupatorium glutinosum lam. leaves, Molecules, 28(2023), No. 4, art. No. 1591. doi: 10.3390/molecules28041591
|
[11] |
M. Suneetha, K.M. Rao, and S.S. Han, Cell/tissue adhesive, self-healable, biocompatible, hemostasis, and antibacterial hydrogel dressings for wound healing applications, Adv. Mater. Interfaces, 9(2022), No. 13, art. No. 2102369. doi: 10.1002/admi.202102369
|
[12] |
M. Darroudi, M.B. Ahmad, M. Hakimi, et al., Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin, Int. J. Miner. Metall. Mater., 20(2013), No. 4, p. 403. doi: 10.1007/s12613-013-0743-2
|
[13] |
J.W. Song, C.Q. Yuan, T.F. Jiao, et al., Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly, Small, 16(2020), No. 8, art. No. 1907309. doi: 10.1002/smll.201907309
|
[14] |
J.R. Xiong, Y.F. Cao, H.T. Zhao, et al., Cooperative antibacterial enzyme-Ag-polymer nanocomposites, ACS Nano, 16(2022), No. 11, p. 19013. doi: 10.1021/acsnano.2c07930
|
[15] |
Y.A. Qing, L. Cheng, R.Y. Li, et al., Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, Int. J. Nanomed., 13(2018), p. 3311. doi: 10.2147/IJN.S165125
|
[16] |
S. Agnihotri, S. Mukherji, and S. Mukherji, Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver, Nanoscale, 5(2013), No. 16, p. 7328. doi: 10.1039/c3nr00024a
|
[17] |
D.S. Song, J.H. Song, and S.H. Ahn, Three-dimensional printing of Ag nanoparticle meshes for antibacterial activity, ACS Appl. Nano Mater., 6(2023), No. 12, p. 10845. doi: 10.1021/acsanm.3c02226
|
[18] |
I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, and C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry, Int. J. Nanomed., 15(2020), p. 2555. doi: 10.2147/IJN.S246764
|
[19] |
J.Y. Chen, L. Yang, J.C. Chen, et al., Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing, Chem. Eng. J., 374(2019), p. 1373. doi: 10.1016/j.cej.2019.05.184
|
[20] |
A.S. Jain, P.S. Pawar, A. Sarkar, V. Junnuthula, and S. Dyawanapelly, Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications, Int. J. Mol. Sci., 22(2021), No. 21, art. No. 11993. doi: 10.3390/ijms222111993
|
[21] |
L. Jaiswal, S. Shankar, J.W. Rhim, and D.H. Hahm, Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications, Int. J. Biol. Macromol., 159(2020), p. 859. doi: 10.1016/j.ijbiomac.2020.05.145
|
[22] |
O. Pryshchepa, P. Pomastowski, and B. Buszewski, Silver nanoparticles: Synthesis, investigation techniques, and properties, Adv. Colloid Interface Sci., 284(2020), art. No. 102246. doi: 10.1016/j.cis.2020.102246
|
[23] |
T. Bruna, F. Maldonado-Bravo, P. Jara, and N. Caro, Silver nanoparticles and their antibacterial applications, Int. J. Mol. Sci., 22(2021), No. 13, art. No. 7202. doi: 10.3390/ijms22137202
|
[24] |
R. Shanmuganathan, I. Karuppusamy, M. Saravanan, et al., Synthesis of silver nanoparticles and their biomedical applications - A comprehensive review, Curr. Pharm. Des., 25(2019), No. 24, p. 2650. doi: 10.2174/1381612825666190708185506
|
[25] |
Y.N. Liu, F. Li, Z.R. Guo, et al., Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections, Chem. Eng. J., 382(2020), art. No. 122990. doi: 10.1016/j.cej.2019.122990
|
[26] |
S. Dawadi, S. Katuwal, A. Gupta, et al., Current research on silver nanoparticles: Synthesis, characterization, and applications, J. Nanomater., 2021(2021), art. No. 6687290.
|
[27] |
N. Kang, S. Zhang, F. Tang, J. Wang, and L.D. Li, Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor, Colloids Surf. A, 654(2022), art. No. 130071. doi: 10.1016/j.colsurfa.2022.130071
|
[28] |
W.J. Zhou, Q.H. Jing, J.X. Li, Y.Z. Chen, G.D. Hao, and L.N. Wang, Organic photocatalysts for solar water splitting: Molecular- and aggregate-level modifications, Acta Phys. Chim. Sin., 39(2023), art. No. 2211010.
|
[29] |
F. Tang, C. Wang, X.Y. Wang, and L.D. Li, Facile synthesis of biocompatible fluorescent nanoparticles for cellular imaging and targeted detection of cancer cells, ACS Appl. Mater. Interfaces, 7(2015), No. 45, p. 25077. doi: 10.1021/acsami.5b08907
|
[30] |
J. Wang, F. Tang, Y. Wang, Q.P. Lu, S.Q. Liu, and L.D. Li, Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor, ACS Appl. Mater. Interfaces, 12(2020), No. 1, p. 1558. doi: 10.1021/acsami.9b18646
|
[31] |
E. Cook, G. Labiento, and B.P.S. Chauhan, Fundamental methods for the phase transfer of nanoparticles, Molecules, 26(2021), No. 20, art. No. 6170. doi: 10.3390/molecules26206170
|
[32] |
Q. Deng, Z.H. Zhang, Y.Y. Liu, et al., Green assembly of silver nanoparticles on PET by using silymarin as a natural reductant, Surf. Interfaces, 45(2024), art. No. 103854. doi: 10.1016/j.surfin.2024.103854
|
[33] |
W.G. Glasser, About making lignin great again-some lessons from the past, Front. Chem., 7(2019), art. No. 565. doi: 10.3389/fchem.2019.00565
|
[34] |
A. do Espirito Santo Pereira, J. Luiz de Oliveira, S. Maira Savassa, C. Barbara Rogério, G. Araujo de Medeiros, and L.F. Fraceto, Lignin nanoparticles: New insights for a sustainable agriculture, J. Cleaner Prod., 345(2022), art. No. 131145. doi: 10.1016/j.jclepro.2022.131145
|
[35] |
B. Abraham, V.L. Syamnath, K.B. Arun, et al., Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook, Sci. Total Environ., 881(2023), art. No. 163316. doi: 10.1016/j.scitotenv.2023.163316
|
[36] |
A.M. Afanasenko, X. Wu, A. De Santi, et al., Clean synthetic strategies to biologically active molecules from lignin: A green path to drug discovery, Angew. Chem. Int. Ed, 63(2024), No. 4, art. No. e202308131. doi: 10.1002/anie.202308131
|
[37] |
X. He, H. Kim, T.G. Dong, I. Gates, and Q.Y. Lu, Green synthesis of Ag/lignin nanoparticle-loaded cellulose aerogel for catalytic degradation and antimicrobial applications, Cellulose, 29(2022), No. 17, p. 9341. doi: 10.1007/s10570-022-04848-4
|
[38] |
A.F. Yi, M.N. Wu, P.W. Liu, Y.L. Feng, and H.R. Li, Reductive leaching of low-grade manganese ore with pre-processed cornstalk, Int. J. Miner. Metall. Mater., 22(2015), No. 12, p. 1245. doi: 10.1007/s12613-015-1191-y
|
[39] |
C.G. Boeriu, D. Bravo, R.J.A. Gosselink, and J.E.G. van Dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod., 20(2004), No. 2, p. 205. doi: 10.1016/j.indcrop.2004.04.022
|
[40] |
R.M. dos Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas, and D. Pasquini, Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste, Ind. Crops Prod., 50(2013), p. 707. doi: 10.1016/j.indcrop.2013.08.049
|
[41] |
S.B. Parit, V.C. Karade, R.B. Patil, et al., Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties, Mater. Today Chem., 17(2020), art. No. 100285. doi: 10.1016/j.mtchem.2020.100285
|
[42] |
N. Sultana, P.K. Raul, D. Goswami, et al., Bio-nanoparticle assembly: A potent on-site biolarvicidal agent against mosquito vectors, RSC Adv., 10(2020), No. 16, p. 9356. doi: 10.1039/C9RA09972G
|
[43] |
W.Z. Jiang, Y.C. Zhang, D.J. Yang, X.Q. Qiu, and Z.X. Li, Ultrasonic-assisted synthesis of lignin-based ultrasmall silver nanoparticles for photothermal-mediated sterilization, Int. J. Biol. Macromol., 262(2024), art. No. 129827. doi: 10.1016/j.ijbiomac.2024.129827
|
[44] |
K.J. Haunreiter, A.B. Dichiara, and R. Gustafson, Nanocellulose by ammonium persulfate oxidation: An alternative to TEMPO-mediated oxidation, ACS Sustainable Chem. Eng., 10(2022), No. 12, p. 3882. doi: 10.1021/acssuschemeng.1c07814
|
[45] |
H.M. Zhang, K. Xue, X.H. Xu, et al., Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators, Small, 20(2024), No. 10, art. No. 2305502. doi: 10.1002/smll.202305502
|
[46] |
D.Q. Cai, X.H. Kong, X.J. Zhang, et al., Alkali-activated potassium persulfate treatment of sugarcane filter cake for the rapid production of fulvic-like-acid fertilizer, ACS Sustainable Chem. Eng., 11(2023), No. 37, p. 13678. doi: 10.1021/acssuschemeng.3c03511
|