Cite this article as: |
T.A. Koltygina, V.E. Bazhenov, A.V. Koltygin, A.S. Prosviryakov, N.Y. Tabachkova, I.I. Baranov, A.A. Komissarov, and A.I. Bazlov, Microstructure and mechanical properties of new Mg–Zn–Y–Zr alloys with high castability and ignition resistance, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2980-y |
A.I. Bazlov E-mail: bazlov@misis.ru
[1] |
I.J. Polmear, Light Alloys : From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Oxford, 2005.
|
[2] |
L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals : Structure and Properties, CRC Press, London, 2003.
|
[3] |
D. Dvorský, J. Kubásek, K. Hosová, M. Čavojský, and D. Vojtěch, Microstructure, mechanical, corrosion, and ignition properties of WE43 alloy prepared by different processes, Metals, 11(2021), No. 5, art. No. 728. doi: 10.3390/met11050728
|
[4] |
A. Luo and M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. Mater. Sci., 29(1994), No. 20, p. 5259. doi: 10.1007/BF01171534
|
[5] |
Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Mater., 55(2006), No. 5, p. 453. doi: 10.1016/j.scriptamat.2006.05.011
|
[6] |
H. Shi, Q. Luo, Q. Li, J.Y. Zhang, and K.C. Chou, Design of heat-dissipating Mg–La–Zn alloys based on thermodynamic calculations, [in] J.B. Jordon, V. Miller, V.V. Joshi, and N.R. Neelameggham, eds., Magnesium Technology 2020, The Minerals, Metals & Materials Series, Springer, Cham, 2020, p. 101.
|
[7] |
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
|
[8] |
D.K. Xu, E.H. Han, and Y.B. Xu, Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review, Prog. Nat. Sci. Mater. Int., 26(2016), No. 2, p. 117. doi: 10.1016/j.pnsc.2016.03.006
|
[9] |
Y.J. Nie, J.W. Dai, X. Li, and X.B. Zhang, Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures, J. Magnes. Alloys, 9(2021), No. 4, p. 1123. doi: 10.1016/j.jma.2020.09.021
|
[10] |
L. Bao, Z.Q. Zhang, Q.C. Le, S. Zhang, and J.Z. Cui, Corrosion behavior and mechanism of Mg–Y–Zn–Zr alloys with various Y/Zn mole ratios, J. Alloys Compd., 712(2017), p. 15. doi: 10.1016/j.jallcom.2017.04.053
|
[11] |
M. Yamasaki and Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase, Scripta Mater., 60(2009), No. 4, p. 264. doi: 10.1016/j.scriptamat.2008.10.022
|
[12] |
Z.P. Luo and S.Q. Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy, J. Mater. Sci. Lett., 19(2000), No. 9, p. 813. doi: 10.1023/A:1006793411506
|
[13] |
H.X. Liao, J. Kim, T. Lee, et al., Effect of heat treatment on LPSO morphology and mechanical properties of Mg–Zn–Y–Gd alloys, J. Magnes. Alloys, 8(2020), No. 4, p. 1120. doi: 10.1016/j.jma.2020.06.009
|
[14] |
D. Wang, J.S. Zhang, J.D. Xu, Z.L. Zhao, W.L. Cheng, and C.X. Xu, Microstructure and corrosion behavior of Mg–Zn–Y–Al alloys with long-period stacking ordered structures, J. Magnes. Alloys, 2(2014), No. 1, p. 78. doi: 10.1016/j.jma.2014.01.008
|
[15] |
S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, and W.Q. Wang, Effect of mole ratio of Y to Zn on phase constituent of Mg–Zn–Zr–Y alloys, Trans. Nonferrous Met. Soc. China, 21(2011), No. 4, p. 795. doi: 10.1016/S1003-6326(11)60783-8
|
[16] |
Y.M. Zhu, A.J. Morton, and J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys, Acta Mater., 58(2010), No. 8, p. 2936. doi: 10.1016/j.actamat.2010.01.022
|
[17] |
J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys, Acta Mater., 60(2012), No. 17, p. 5948. doi: 10.1016/j.actamat.2012.05.035
|
[18] |
G. Shao, V. Varsani, Y. Wang, M. Qian, and Z. Fan, On the solidification microstructure of Mg–30Zn–2.5Y metal–intermetallic alloy, Intermetallics, 14(2006), No. 6, p. 596. doi: 10.1016/j.intermet.2005.10.001
|
[19] |
D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys, J. Alloys Compd., 461(2008), No. 1-2, p. 248. doi: 10.1016/j.jallcom.2007.07.096
|
[20] |
V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
|
[21] |
V.E. Bazhenov, S.S. Saidov, Y.V. Tselovalnik, et al., Comparison of castability, mechanical, and corrosion properties of Mg–Zn–Y–Zr alloys containing LPSO and W phases, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1276. doi: 10.1016/S1003-6326(21)65577-2
|
[22] |
D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys, J. Alloys Compd., 432(2007), No. 1-2, p. 129. doi: 10.1016/j.jallcom.2006.05.123
|
[23] |
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Grain refinement of magnesium alloys, Metall. Mater. Trans. A, 36(2005), No. 7, p. 1669. doi: 10.1007/s11661-005-0030-6
|
[24] |
M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater., 54(2006), No. 5, p. 881. doi: 10.1016/j.scriptamat.2005.11.002
|
[25] |
W.N. Zhang, Z.X. Feng, X. Li, and Y.M. Chen, Effect of Zr content on the distribution characteristic of the 14H and 18R LPSO phases, Mater. Res., 23(2020), No. 1, art. No. e20190539. doi: 10.1590/1980-5373-mr-2019-0539
|
[26] |
W. Rong, Y. Zhang, Y.J. Wu, et al., Effects of Zr and Mn additions on formation of LPSO structure and dynamic recrystallization behavior of Mg–15Gd–1Zn alloy, J. Alloys Compd., 692(2017), p. 805. doi: 10.1016/j.jallcom.2016.09.068
|
[27] |
X. Zhao, L.L. Shi, and J. Xu, Biodegradable Mg–Zn–Y alloys with long-period stacking ordered structure: Optimization for mechanical properties, J. Mech. Behav. Biomed. Mater., 18(2013), p. 181. doi: 10.1016/j.jmbbm.2012.11.016
|
[28] |
S.O. Rogachev, V.E. Bazhenov, A.A. Komissarov, et al., Effect of hot rolling on structure and mechanical properties of Mg–Y–Zn–Mn alloys, Metals, 13(2023), No. 2, art. No. 223. doi: 10.3390/met13020223
|
[29] |
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273. doi: 10.1016/S0364-5916(02)00037-8
|
[30] |
V.E. Bazhenov, A.V. Petrova, and A.V. Koltygin, Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Met., 12(2018), No. 3, p. 514.
|
[31] |
ASTM International, ASTM Standard G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, 2017.
|
[32] |
N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater., 8(2012), No. 3, p. 925. doi: 10.1016/j.actbio.2011.11.014
|
[33] |
V.E. Bazhenov, A.V. Koltygin, A. Komissarov, et al., Microstructure, mechanical and corrosion properties of biodegradable Mg–Ga–Zn–X (X = Ca, Y, Nd) alloys, [in] Metal 2018 - 27th International Conference on Metallurgy and Materials, Brno, 2018.
|
[34] |
A.V. Petrova, V.E. Bazhenov, and A.V. Koltygin, Prediction of misruns in ML5 (AZ91) alloy casting and alloy fluidity using numerical simulation, Russ. J. Non Ferr. Met., 59(2018), No. 6, p. 617. doi: 10.3103/S1067821218060159
|
[35] |
V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Design of Mg–Zn–Si–Ca casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 8(2020), No. 1, p. 184. doi: 10.1016/j.jma.2019.11.008
|
[36] |
F.J. Xing, F. Guo, J. Su, X.P. Zhao, and H.S. Cai, The existing forms of Zr in Mg–Zn–Zr magnesium alloys and its grain refinement mechanism, Mater. Res. Express, 8(2021), No. 6, art. No. 066516. doi: 10.1088/2053-1591/ac083c
|
[37] |
R.C. Bonnah, Y. Fu, and H. Hao, Microstructure and mechanical properties of AZ91 magnesium alloy with minor additions of Sm, Si and Ca elements, China Foundry, 16(2019), No. 5, p. 319. doi: 10.1007/s41230-019-9067-9
|
[38] |
H.M. Chen, D. Han, H.W. Cui, et al., Microstructures and properties of as-cast rare Earth magnesium alloy with LPSO phase, Mater. Res. Express, 6(2019), No. 9, art. No. 0965a5. doi: 10.1088/2053-1591/ab332d
|
[39] |
M. Liu, D.S. Shih, C. Parish, and A. Atrens, The ignition temperature of Mg alloys WE43, AZ31 and AZ91, Corros. Sci., 54(2012), p. 139. doi: 10.1016/j.corsci.2011.09.004
|
[40] |
W.M. Fassell, L.B. Gulbransen, J.R. Lewis, and J.H. Hamilton, Ignition temperatures of magnesium and magnesium alloys, JOM, 3(1951), No. 7, p. 522. doi: 10.1007/BF03397342
|
[41] |
H. Hu, A. Yu, N.Y. Li, and J.E. Allison, Potential magnesium alloys for high temperature die cast automotive applications: A review, Mater. Manuf. Process., 18(2003), No. 5, p. 687. doi: 10.1081/AMP-120024970
|
[42] |
Y.H. Kang, H. Yan, and R.S. Chen, Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg–4Y–2.3Nd–1Gd–0.6Zr magnesium alloy, Mater. Sci. Eng. A, 645(2015), p. 361. doi: 10.1016/j.msea.2015.08.041
|
[43] |
C.Q. Li, D.K. Xu, Z.R. Zeng, et al., Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys, Mater. Des., 121(2017), p. 430. doi: 10.1016/j.matdes.2017.02.078
|
[44] |
Z.Q. Zhang, X. Liu, W.Y. Hu, et al., Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios, J. Alloys Compd., 624(2015), p. 116. doi: 10.1016/j.jallcom.2014.10.177
|
[45] |
G.L. Song, A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci., 41(1998), No. 2, p. 249. doi: 10.1016/S0010-938X(98)00121-8
|
[46] |
L.L. Zhang, J.S. Zhang, R. Zhao, J.X. Zhang, and C.X. Xu, Research of the microstructure, mechanical property and corrosion behaviours of Mg–Y–Zn–Mn (–Mo) alloy with solution treatment, Corros. Eng. Sci. Technol., 56(2021), No. 5, p. 427. doi: 10.1080/1478422X.2021.1893942
|
[47] |
V.E. Bazhenov, I.I. Baranov, V.V. Lyskovich, et al., Investigation of castability, mechanical, corrosion properties and flammability of ML-OPB and EWZ43 magnesium alloys, Izv.VUZ. Tsvet. Met., 1(2023), No. 1, p. 39. doi: 10.17073/0021-3438-2023-1-39-55
|