Cite this article as: |
Gianluca Pirro, Alessandra Martucci, Alessandro Morri, Mariangela Lombardi, and Lorella Ceschini, A novel solution treatment and aging for powder bed fusion–laser beam Ti–6Al–2Sn–4Zr–6Mo alloy: Microstructural and mechanical characterization, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-3006-5 |
Gianluca Pirro E-mail: gianluca.pirro2@unibo.it
[1] |
H.Y. Fan, C.C. Wang, Y.J. Tian, K. Zhou, and S.F. Yang, Laser powder bed fusion (L-PBF) of Ti–6Al–4V/Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V/γ-TiAl bimetals: Processability, interface and mechanical properties, Mater. Sci. Eng. A, 871(2023), art. No. 144907. doi: 10.1016/j.msea.2023.144907
|
[2] |
R.R. Boyer, Introduction and overview of titanium and titanium alloys, [in] J.R. Davis, eds., Metals Handbook Desk Edition, ASM International, Ohio State, 1998, p. 575.
|
[3] |
J.D. Destefani, Introduction to titanium and titanium alloys, [in] ASM Handbook Committee, Properties and Selection : Nonferrous Alloys and Special-Purpose Materials, ASM International, Ohio State, 1990, p. 586.
|
[4] |
C. Leyens and M. Peters, Titanium and Titanium Alloys : Fundamentals and Applications, Wiley-VCH, Berlin, 2003.
|
[5] |
G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007, p. 337.
|
[6] |
M.M. Attallah, S. Zabeen, R.J. Cernik, and M. Preuss, Comparative determination of the α/β phase fraction in α + β-titanium alloys using X-ray diffraction and electron microscopy, Mater. Charact., 60(2009), No. 11, p. 1248. doi: 10.1016/j.matchar.2009.05.006
|
[7] |
A. Carrozza, A. Aversa, P. Fino, and M. Lombardi, A study on the microstructure and mechanical properties of the Ti–6Al–2Sn–4Zr–6Mo alloy produced via laser powder bed fusion, J. Alloys Compd., 870(2021), art. No. 159329. doi: 10.1016/j.jallcom.2021.159329
|
[8] |
G.X. Li, S. Chandra, R.A.R. Rashid, S. Palanisamy, and S.L. Ding, Machinability of additively manufactured titanium alloys: A comprehensive review, J. Manuf. Process., 75(2022), p. 72. doi: 10.1016/j.jmapro.2022.01.007
|
[9] |
H.D. Nguyen, A. Pramanik, A.K. Basak, et al., A critical review on additive manufacturing of Ti–6Al–4V alloy: Microstructure and mechanical properties, J. Mater. Res. Technol., 18(2022), p. 4641. doi: 10.1016/j.jmrt.2022.04.055
|
[10] |
S.Y. Liu and Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater. Des., 164(2019), art. No. 107552. doi: 10.1016/j.matdes.2018.107552
|
[11] |
P. Nyamekye, S.R. Golroudbary, H. Piili, P. Luukka, and A. Kraslawski, Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries, Adv. Ind. Manuf. Eng., 6(2023), art. No. 100112.
|
[12] |
S. Cecchel, Materials and technologies for lightweighting of structural parts for automotive applications: A review, SAE Int. J. Mater. Manf., 14(2020), No. 1, p. 5.
|
[13] |
M. Motyka, Martensite formation and decomposition during traditional and AM processing of two-phase titanium alloys–An overview, Metals, 11(2021), No. 3, art. No. 481. doi: 10.3390/met11030481
|
[14] |
D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive manufacturing of metals, Acta Mater., 117(2016), p. 371. doi: 10.1016/j.actamat.2016.07.019
|
[15] |
S. Alipour, A. Moridi, F. Liou, and A. Emdadi, The trajectory of additively manufactured titanium alloys with superior mechanical properties and engineered microstructures, Addit. Manuf., 60(2022), art. No. 103245.
|
[16] |
A. Carrozza, A. Aversa, P. Fino, and M. Lombardi, Towards customized heat treatments and mechanical properties in the LPBF-processed Ti–6Al–2Sn–4Zr–6Mo alloy, Mater. Des., 215(2022), art. No. 110512. doi: 10.1016/j.matdes.2022.110512
|
[17] |
H.K. Rafi, N.V. Karthik, H.J. Gong, T.L. Starr, and B.E. Stucker, Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting, J. Mater. Eng. Perform., 22(2013), No. 12, p. 3872.
|
[18] |
A. Takase, Residual stress and phase stability of titanium alloys fabricated by laser and electron beam powder bed fusion techniques, Mater. Trans., 64(2023), No. 1, p. 17. doi: 10.2320/matertrans.MT-MLA2022004
|
[19] |
Z.X. Xiao, C.P. Chen, H.H. Zhu, et al., Study of residual stress in selective laser melting of Ti6Al4V, Mater. Des., 193(2020), art. No. 108846. doi: 10.1016/j.matdes.2020.108846
|
[20] |
N. Yumak and K.Aslantas, A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters, J. Mater. Res. Technol., 9(2020), No. 6, p. 15360. doi: 10.1016/j.jmrt.2020.10.088
|
[21] |
R.P. Kolli and A. Devaraj, A review of metastable beta titanium alloys, Metals, 8(2018), No. 7, art. No. 506. doi: 10.3390/met8070506
|
[22] |
C. Sauer and G. Lütjering, Processing, microstructure and properties of Ti-6246, [in] Proceedings of the 9th World Conference on Titanium : Titanium, Saint-Petersburg, 1999.
|
[23] |
J.D. Cotton, R.D. Briggs, R.R. Boyer, et al., State of the art in beta titanium alloys for airframe applications, JOM, 67(2015), No. 6, p. 1281. doi: 10.1007/s11837-015-1442-4
|
[24] |
R. Santhosh, M. Geetha, and M.N. Rao, Recent developments in heat treatment of beta titanium alloys for aerospace applications, Trans. Indian Inst. Met., 70(2017), No. 7, p. 1681. doi: 10.1007/s12666-016-0985-6
|
[25] |
A. Gheysarian and M. Abbasi, The effect of aging on microstructure, formability and springback of Ti–6Al–4V titanium alloy, J. Mater. Eng. Perform., 26(2017), No. 1, p. 374. doi: 10.1007/s11665-016-2431-7
|
[26] |
M. Jackson, R.J. Dashwood, L. Christodoulou, and H.M. Flower, Isothermal subtransus forging of Ti–6Al–2Sn–4Zr–6Mo, J. Light. Met., 2(2002), No. 3, p. 185. doi: 10.1016/S1471-5317(02)00044-5
|
[27] |
M.H.I. Alluaibi, E.M. Cojocaru, A. Rusea, N. Șerban, G. Coman, and V.D. Cojocaru, Microstructure and mechanical properties evolution during solution and ageing treatment for a hot deformed, above β-transus, Ti-6246 alloy, Metals, 10(2020), No. 9, art. No. 1114. doi: 10.3390/met10091114
|
[28] |
H.C. Yu, F.Z. Li, Z.M. Wang, and X.Y. Zeng, Fatigue performances of selective laser melted Ti–6Al–4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments, Int. J. Fatigue, 120(2019), p. 175. doi: 10.1016/j.ijfatigue.2018.11.019
|
[29] |
G. Ter Haar and T. Becker, Selective laser melting produced Ti–6Al–4V: Post-process heat treatments to achieve superior tensile properties, Materials, 11(2018), No. 1, art. No. 146. doi: 10.3390/ma11010146
|
[30] |
R. Casati, G. Boari, A. Rizzi, and M. Vedani, Effect of annealing temperature on microstructure and high-temperature tensile behaviour of Ti-6242S alloy produced by laser powder bed fusion, Eur. J. Mater., 1(2021), No. 1, p. 72. doi: 10.1080/26889277.2021.1997341
|
[31] |
C. Fleißner-Rieger, T. Pfeifer, C. Turk, and H. Clemens, Optimization of the post-process heat treatment strategy for a near-α titanium base alloy produced by laser powder bed fusion, Materials, 15(2022), No. 3, art. No. 1032.
|
[32] |
Y. Chong, T. Bhattacharjee, and N. Tsuji, Bi-lamellar microstructure in Ti–6Al–4V: Microstructure evolution and mechanical properties, Mater. Sci. Eng. A, 762(2019), art. No. 138077. doi: 10.1016/j.msea.2019.138077
|
[33] |
S. Lampman, Wrought titanium and titanium alloys, [in] ASM Handbook Committee, Properties and Selection : Nonferrous Alloys and Special-Purpose Materials, ASM International, Ohio State, 1990, p. 592.
|
[34] |
R. Gaddam, B. Sefer, R. Pederson, and M.L. Antti, Study of alpha-case depth in Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V, IOP Conf. Ser.: Mater. Sci. Eng., 48(2013), art. No. 012002. doi: 10.1088/1757-899X/48/1/012002
|
[35] |
P. Stella, I. Giovanetti, G. Masi, M. Leoni, and A. Molinari, Microstructure and microhardness of heat-treated Ti–6Al–2Sn–4Zr–6Mo alloy, J. Alloys Compd., 567(2013), p. 134. doi: 10.1016/j.jallcom.2013.03.046
|
[36] |
A.L. Otte, P.T. Mai, A. Stark, M. Hoelzel, M. Hofmann, and J. Gibmeier, Kinetics of martensite decomposition and microstructure stability of Ti-6246 during rapid heating to service temperatures, Metals, 13(2023), No. 3, art. No. 484. doi: 10.3390/met13030484
|
[37] |
Y. Vahidshad and A.H. Khodabakhshi, Effect of solution treatment and aging temperature on α' and Ti3Al(α2) phase formation and mechanical properties of water-quenched Ti–6Al–4V, Metallogr. Microstruct. Anal., 11(2022), No. 1, p. 59. doi: 10.1007/s13632-021-00818-7
|
[38] |
L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, and C.W. Domby, Metallography and microstructures of titanium and its alloys, [in] G.F.V. Voor, eds., Metallography and Microstructures, ASM International, Ohio State, 2004, p. 899.
|
[39] |
M. Villa, J.W. Brooks, R.P. Turner, H. Wang, F. Boitout, and R.M. Ward, Microstructural modeling of the α + β phase in Ti–6Al–4V: A diffusion-based approach, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2898. doi: 10.1007/s11663-019-01675-0
|
[40] |
S. Malinov, W. Sha, Z. Guo, C.C. Tang, and A.E. Long, Synchrotron X-ray diffraction study of the phase transformations in titanium alloys, Mater. Charact., 48(2002), No. 4, p. 279. doi: 10.1016/S1044-5803(02)00286-3
|
[41] |
H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of heat treatments on microstructure and properties of Ti–6Al–4V ELI alloy fabricated by electron beam melting (EBM), Mater. Sci. Eng. A, 685(2017), p. 417. doi: 10.1016/j.msea.2017.01.019
|
[42] |
J.X. Yu, Z.P. Yin, Z.R. Huang, et al., Effect of aging treatment on microstructural evolution and mechanical properties of the electron beam cold hearth melting Ti–6Al–4V alloy, Materials, 15(2022), No. 20, art. No. 7122. doi: 10.3390/ma15207122
|
[43] |
H. Jaber, J. Kónya, K. Kulcsár, and T. Kovács, Effects of annealing and solution treatments on the microstructure and mechanical properties of Ti6Al4V manufactured by selective laser melting, Materials, 15(2022), No. 5, art. No. 1978. doi: 10.3390/ma15051978
|
[44] |
W.T. Becker, Mechanisms and appearances of ductile and brittle fracture in metals, [in] W.T. Becker and R.J. Shipley, eds., Failure Analysis and Prevention, ASM International, Ohio State, 2002, p. 587.
|
[45] |
V.A. Joshi, Titanium alloys: Atlas of fractographs, [in] ASM Handbook Committee, Fractography, ASM International, Ohio State, 1987, p. 441.
|