Kunlan Diao, Yuhuan Xu, Jingyu Du, Teng Zhou, Xiao Zhan, Daohai Zhang, Xiaosi Qi, and Shuhao Qin, High toughness and strong electromagnetic shielding properties of PAM/PEG dual network hydrogels, Int. J. Miner. Metall. Mater., 32(2025), No. 3, pp.747-755. https://dx.doi.org/10.1007/s12613-024-3012-7
Cite this article as: Kunlan Diao, Yuhuan Xu, Jingyu Du, Teng Zhou, Xiao Zhan, Daohai Zhang, Xiaosi Qi, and Shuhao Qin, High toughness and strong electromagnetic shielding properties of PAM/PEG dual network hydrogels, Int. J. Miner. Metall. Mater., 32(2025), No. 3, pp.747-755. https://dx.doi.org/10.1007/s12613-024-3012-7
Research Article

High toughness and strong electromagnetic shielding properties of PAM/PEG dual network hydrogels

Author Affilications
  • Corresponding author:

    Daohai Zhang      E-mail: zhangdaohai6235@163.com

    Xiaosi Qi      E-mail: xsqi@gzu.edu.cn

    Shuhao Qin      E-mail: qinshuhao@126.com

  • With the wide application of electromagnetic wave, a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave. Complete cross-linking strategy is adopted in this paper. Polyacrylamide (PAM) was synthesized by in-situ polymerization of acrylamide (AM) monomer. The obtained PAM was blended with polyethylene glycol (PEG) to prepare PAM/PEG hydrogels and form rigid support structures. Subsequently, the modified carbon nanotubes (S-CNTs) were incorporated into sodium alginate (SA) and PAM/PEG. Finally, Na+ was used to trigger SA self-assembly, which significantly improved the mechanical properties and electrical conductivity of the hydrogels, and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high toughness and strong electromagnetic interference (EMI) shielding efficiency (SE). The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa, which was 7.69% higher than that of PAM/PEG hydrogel (17.69 MPa). More encouraging, the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt% was 32.92 dB, which is 113.21% higher than that of PAM/PEG hydrogels (15.44 dB).

  • This work was financially supported by the National Natural Science Foundation of China (No. 52163001), the Guizhou Provincial Science and Technology Program Project Grant, China (Qiankehe Platform Talents-CXTD [2021]005, Qiankehe Platform Talents-GCC [2022]010-1, Qiankehe Fuqi [2023]001, Qiankehe Platform Talents-GCC [2023]035, and Qiankehe Platform Talents-CXTD [2023]003), the Guizhou Minzu University Research Platform Grant, China (No. GZMUGCZX [2021]01), the Central Guided Local Science and Technology Development Funds Project, China (Qiankehe Zhong Yindi [2023]035), the Green Chemistry and Resource Environment Innovation Team of Guizhou Higher Education Institutions, China (Guizhou Education and Technology [2022]No. 13), and the Doctor Startup Fund of Guizhou Minzu University, China (No. GZMUZK [2024]QD77).

    The authors declare no conflict of interest.

    The online version contains supplementary material available at https://doi.org/10.1007/s12613-024-3012-7.

  • [1]
    J.H. Wen, D. Lan, Y.Q. Wang, et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1701. DOI: 10.1007/s12613-024-2881-0
    [2]
    X.Q. Yang, H.H. Wang, J. Chen, et al., Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 812. DOI: 10.1007/s12613-023-2768-5
    [3]
    X.B. Xie, H.S. Wang, H. Kimura, C. Ni, W. Du, and G.L. Wu, NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2274. DOI: 10.1007/s12613-024-2880-1
    [4]
    M.H. Yuan and H.J. Wang, Robust and ultra-flexible PVDF composite film towards electromagnetic interference shielding and active personal thermal management, Prog. Org. Coat., 189(2024), art. No. 108362. DOI: 10.1016/j.porgcoat.2024.108362
    [5]
    J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, and J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding, Nano Micro Lett., 16(2024), art. No. 31. DOI: 10.1007/s40820-023-01246-8
    [6]
    Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642. DOI: 10.1002/adma.202211642
    [7]
    T.T. Li, X.M. Wang, Y.T. Wang, et al., Fe3O4 and Ag micro/nano coating for high-efficiency flame retardancy and electromagnetic interference shielding, Prog. Org. Coat., 181(2023), art. No. 107563. DOI: 10.1016/j.porgcoat.2023.107563
    [8]
    M.K. Li, Y.Y. Sun, D.Y. Feng, K.P. Ruan, X. Liu, and J.W. Gu, Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers, Nano Res., 16(2023), No. 5, p. 7820. DOI: 10.1007/s12274-023-5594-1
    [9]
    W.X. Chen and H.L. Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1922. DOI: 10.1007/s12613-023-2795-2
    [10]
    P. Kaur, S. Bindra Narang, and S. Bahel, Complex permittivity, complex permeability and reflection loss of Co–Zr substituted La–Sr hexaferrites in 18–40 GHz frequency range, J. Magn. Magn. Mater., 502(2020), art. No. 166456. DOI: 10.1016/j.jmmm.2020.166456
    [11]
    F.M. Oliveira and R. Gusmão, Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3048. DOI: 10.1021/acsaelm.0c00545
    [12]
    P. Song, B. Liu, C.B. Liang, et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities, Nano Micro Lett., 13(2021), No. 1, art. No. 91. DOI: 10.1007/s40820-021-00624-4
    [13]
    Q. Su, H.Q. Wang, Y.F. He, D.D. Liu, X.X. Huang, and B. Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 197. DOI: 10.1007/s12613-023-2707-5
    [14]
    Y.F. Yang, M.R. Han, W. Liu, N. Wu, and J.R. Liu, Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding, Nano Res., 15(2022), No. 10, p. 9614. DOI: 10.1007/s12274-022-4817-1
    [15]
    T.Y. Zhu, W.J. Jiang, S. Wu, et al., Multifunctional MXene/PEDOT:PSS-based phase change organohydrogels for electromagnetic interference shielding and medium-low temperature infrared stealth, ACS Appl. Mater. Interfaces, 16(2024), No. 12, p. 15372. DOI: 10.1021/acsami.4c01001
    [16]
    T. Hu, G.P. Wu, H.T. Bu, et al., An injectable, adhesive, and self-healable composite hydrogel wound dressing with excellent antibacterial activity, Chem. Eng. J., 450(2022), art. No. 138201. DOI: 10.1016/j.cej.2022.138201
    [17]
    D.K. Li, W. Zhan, W. Zuo, et al., Elastic, tough and switchable swelling hydrogels with high entanglements and low crosslinks for water remediation, Chem. Eng. J., 450(2022), art. No. 138417. DOI: 10.1016/j.cej.2022.138417
    [18]
    W.X. Yang, B.W. Shao, T.Y. Liu, et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 10(2018), No. 9, p. 8245. DOI: 10.1021/acsami.7b18700
    [19]
    S.Q. Lu, B. Ouyang, S.M. Han, et al., Flexible polypyrrole nanotube–polyethylene glycol–polyvinyl alcohol hydrogels for enhanced electromagnetic shielding, ACS Appl. Nano Mater., 5(2022), No. 8, p. 11407. DOI: 10.1021/acsanm.2c02468
    [20]
    T. Zhou, X. Zhan, K.L. Diao, et al., RGO loaded Fe3O4 strategy to construct high toughness PAM hydrogel for electromagnetic shielding, Prog. Org. Coat., 196(2024), art. No. 108750. DOI: 10.1016/j.porgcoat.2024.108750
    [21]
    H.R. Zhang, Z.G. Heng, J. Zhou, et al. , In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance, Chem. Eng. J., 398(2020), art. No. 125559. DOI: 10.1016/j.cej.2020.125559
    [22]
    G. Zhu, L. Giraldo Isaza, B. Huang, and A. Dufresne, Multifunctional nanocellulose/carbon nanotube composite aerogels for high-efficiency electromagnetic interference shielding, ACS Sustainable Chem. Eng., 10(2022), No. 7, p. 2397. DOI: 10.1021/acssuschemeng.1c07148
    [23]
    W. Li, L.Q. Tao, M.C. Kang, et al., Tunable mechanical, self-healing hydrogels driven by sodium alginate and modified carbon nanotubes for health monitoring, Carbohydr. Polym., 295(2022), art. No. 119854. DOI: 10.1016/j.carbpol.2022.119854
    [24]
    C.Z. Qi, X.Y. Wu, J. Liu, X.J. Luo, H.B. Zhang, and Z.Z. Yu, Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating, J. Mater. Sci. Technol., 135(2023), p. 213. DOI: 10.1016/j.jmst.2022.06.046
    [25]
    X.H. Zhang, H.M. Geng, X.H. Zhang, Y.Q. Liu, J.C. Hao, and J.W. Cui, Modulation of double-network hydrogels via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors, J. Mater. Chem. A, 11(2023), No. 6, p. 2996. DOI: 10.1039/D2TA07834A
    [26]
    C.X. Li, X.X. Ni, Y. Lei, S.Y. Li, L. Jin, and B. You, Plasmolysis-inspired yolk–shell hydrogel-core@void@MXene-shell microspheres with strong electromagnetic interference shielding performance, J. Mater. Chem. A, 9(2021), No. 47, p. 26839. DOI: 10.1039/D1TA08788F
    [27]
    Y.H. Xu, X. Zhan, J.Y. Du, Z.L. Wu, and D.H. Zhang, Fluorescent hydrogel with high toughness response based on lanthanide metals: Material Adhesion, multicolor Modulation, information encryption, Chem. Eng. J., 489(2024), art. No. 151303. DOI: 10.1016/j.cej.2024.151303
    [28]
    W.J. Yang, R. Zhang, X. Guo, et al., Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications, J. Mater. Chem. A, 10(2022), No. 44, p. 23649. DOI: 10.1039/D2TA05530A
    [29]
    Y.H. Xu, M. Pei, J.Y. Du, et al., A tough, anticorrosive hydrogel consisting of bio-friendly resources for conductive and electromagnetic shielding materials, New J. Chem., 47(2023), No. 29, p. 13721. DOI: 10.1039/D3NJ02339G
    [30]
    Q.F. Guan, Z.M. Han, K.P. Yang, et al., Sustainable double-network structural materials for electromagnetic shielding, Nano Lett., 21(2021), No. 6, p. 2532. DOI: 10.1021/acs.nanolett.0c05081
    [31]
    X.C. Jiang, N.P. Xiang, H.X. Zhang, Y.J. Sun, Z. Lin, and L.X. Hou, Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity, Carbohydr. Polym., 186(2018), p. 377. DOI: 10.1016/j.carbpol.2018.01.061
    [32]
    S. Abolpour Moshizi, H. Moradi, S.Y. Wu, Z.J. Han, A. Razmjou, and M. Asadnia, Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel, Adv. Mater. Technol., 7(2022), No. 1, art. No. 2100783. DOI: 10.1002/admt.202100783
    [33]
    M. Qin, W.F. Yuan, X.M. Zhang, et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor, Colloids Surf. B, 214(2022), art. No. 112482. DOI: 10.1016/j.colsurfb.2022.112482
    [34]
    O.D. Hu, G.Q. Chen, J.F. Gu, et al., A facile preparation method for anti-freezing, tough, transparent, conductive and thermoplastic poly(vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte, Int. J. Biol. Macromol., 164(2020), p. 2512. DOI: 10.1016/j.ijbiomac.2020.08.115
    [35]
    J.Y. Tian, Z. Sun, C. Shi, and Z.H. Huang, Rapid fabrication of tough sodium alginate/MXene/poly(vinyl alcohol) dual-network hydrogel electrolytes for flexible all-solid-state supercapacitors, Int. J. Biol. Macromol., 248(2023), art. No. 125937. DOI: 10.1016/j.ijbiomac.2023.125937
    [36]
    Z. Zeng, C. Wang, G. Siqueira, et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance, Adv. Sci., 7(2020), No. 15, art. No. 2000979. DOI: 10.1002/advs.202000979
    [37]
    J. Liu, M.Y. Yu, Z.Z. Yu, and V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials, Mater. Today, 66(2023), p. 245. DOI: 10.1016/j.mattod.2023.03.022
    [38]
    X.T. Liu, K. Pang, H.S. Qin, et al., Hyperbolic graphene framework with optimum efficiency for conductive composites, ACS Nano, 16(2022), No. 9, p. 14703. DOI: 10.1021/acsnano.2c05414
    [39]
    Q.M. Zhang, Q. Wang, J. Cui, et al., Structural design and preparation of Ti3C2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding, Nanoscale Adv., 5(2023), No. 14, p. 3549. DOI: 10.1039/D3NA00130J
    [40]
    R. Yin, C. Zhang, J. Shao, et al., Integration of flexible, recyclable, and transient gelatin hydrogels toward multifunctional electronics, J. Mater. Sci. Technol., 145(2023), p. 83. DOI: 10.1016/j.jmst.2022.10.047
    [41]
    Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang, and V. Nicolosi, Multifunctional Ti3C2T x MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding, ACS Nano, 15(2021), No. 1, p. 1465. DOI: 10.1021/acsnano.0c08830
    [42]
    C.C. Yu, S.P. Zhu, C.T. Xing, et al., Fe nanoparticles and CNTs co-decorated porous carbon/graphene foam composite for excellent electromagnetic interference shielding performance, J. Alloys Compd., 820(2020), art. No. 153108. DOI: 10.1016/j.jallcom.2019.153108
  • Related Articles

    [1]Zeli Jia, Xiaomeng Fan, Jiangyi He, Jimei Xue, Fang Ye, Laifei Cheng. Evolution of microstructure and electromagnetic interference shielding performance during the ZrC precursor thermal decomposition process [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(7): 1398-1406. DOI: 10.1007/s12613-023-2619-4
    [2]Ekarat Detsri, Sirilak Rujipornsakul, Tanapong Treetasayoot, Pawarit Siriwattanamethanon. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1204-1214. DOI: 10.1007/s12613-016-1340-y
    [3]Rui Wang, Yan-ping Bao, Yi-hong Li, Hang-Hang An. Optimization of strand and final electromagnetic stirrers of round bloom casters with multiple sections [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1150-1156. DOI: 10.1007/s12613-016-1334-9
    [4]Jun-hui Nie, Cheng-chang Jia, Na Shi, Ya-feng Zhang, Yi Li, Xian Jia. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(6): 695-702. DOI: 10.1007/s12613-011-0499-5
    [5]Chen-sha Li, Bin-song Wang, Ying-jie Qiao, Wei-zhe Lu, Ji Liang. Decoration of activated carbon nanotubes by assembling nano-silver [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 598-602. DOI: 10.1016/S1674-4799(09)60103-5
    [6]Chia-chih Chuang, Wen-jauh Chen. Growth of graphite film over the tops of vertical carbon nanotubes using Ni/Ti/Si substrate [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 128-134. DOI: 10.1016/S1674-4799(09)60022-4
    [7]Zhihe Dou, Tingan Zhang, Haien Yu, Liping Niu, Xiaoli Jiang, Huan Yang. Preparation of CuCr alloys by thermit-reduction electromagnetic stirring [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(6): 538-542. DOI: 10.1016/S1005-8850(07)60124-8
    [8]Xiaofeng Wang, Dianbo Ruan, Zheng You, Yiqiang Lu, Qiqian Sha. Performance of a 60 F carbon nanotubes-based supercapacitor for hybrid power sources [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(3): 267-273.
    [9]Chensha Li, Baoyou Zhang, Xingjuan Chen, Xiaoqing Hu, Ji Liang. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(1): 38-42.
    [10]Yanhui Li, Jun Ding, Junfeng Chen, Zongqiang Mao, Cailu Xu, Dehai Wu. Processes of depositing platinum on carbon nanotubes and their effect on performance of proton exchange membrane fuel cell [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(4): 349-353.

Catalog

    Figures(5)

    Share Article

    Article Metrics

    Article views (1141) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return