Sen Wuand Xuedong Gao, CABOSFV algorithm for high dimensional sparse data clustering, J. Univ. Sci. Technol. Beijing, 11(2004), No. 3, pp. 283-288.
Cite this article as:
Sen Wuand Xuedong Gao, CABOSFV algorithm for high dimensional sparse data clustering, J. Univ. Sci. Technol. Beijing, 11(2004), No. 3, pp. 283-288.
Automation

CABOSFV algorithm for high dimensional sparse data clustering

+ Author Affiliations
  • An algorithm, Clustering Algorithm Based On Sparse Feature Vector (CABOSFV), was proposed for the high dimensional clustering of binary sparse data. This algorithm compresses the data effectively by using a tool ‘Sparse Feature Vector’, thus reduces the data scale enormously, and can get the clustering result with only one data scan. Both theoretical analysis and empirical tests showed that CABOSFV is of low computational complexity. The algorithm finds clusters in high dimensional large datasets efficiently and handles noise effectively.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(414) PDF Downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return