2003 Vol. 10, No. 1

Display Method:
Review
An investigation of corrosion-induced stress during SCC
Wuyang Chu, Kewei Gao, Lijie Qiao, and  Yue Zhang
2003, vol. 10, no. 1, pp. 1-7.
Abstract:
TEM (Transmission Electron Microscope) observations show that corrosion process during stress corrosion cracking (SCC) enhances dislocation emission and motion; and microcrack of SCC initiates when the corrosion-enhanced dislocation emission and motion reaches a certain condition. The passive film or dealloyed layer formed during corrosion or SCC can induce a large tensile stress, which can assist the applied stress to enhance dislocation emission and motion, and then SCC occurs. Experiments show that the variation of SCC susceptibility of brass, α-Ti and stainless steel with the applied potential and pH value of the solution is consistent with that of the corrosion-induced additive stress. Molecular dynamics simulations show that a dealloyed layer can generate a tensile stress; and the corrosion (dealloyed layer)-induced tensile stress can assist the applied stress to enhance dislocation emission and crack propagation.
Mineral
Treatment of electroplating wastewater
Changsheng Peng, Hong Meng, Jinglai Zhang, and  Shouci Lu
2003, vol. 10, no. 1, pp. 8-11.
Abstract:
To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/ electrodialysis) system, the relation between concentration of Cr (Ⅵ) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.
Mineral
Damage statistical mechanics model of top coal in steep top caving coal
Pingwu Shi, Xingping Lai, and  Zhaoning Gao
2003, vol. 10, no. 1, pp. 12-15.
Abstract:
Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal section height were analyzed as well. By terms of the practice project analysis, the horizontal section height increases with the increase of dip angle β and thickness of coal seam M. Dip angle of coal seam β has tremendous impact on horizontal section height, while thickness of coal seam M has slight impact. When thickness of coal seam is below 10m, horizontal section height increases sharply. While thickness exceeds 15m, it is not major factor influencing on horizontal section height any long.
Mineral
Space-time principles of reducing stripping in furrow pits
Shixiong Zhang, Guozhu Zeng, and  Tao Peng
2003, vol. 10, no. 1, pp. 16-17.
Abstract:
The lower slope of furrow pits has following special features: small extent of weathering destruction, short time of production blasting damage, good arching effect of lower slope with small curvature radius, and good bottom effect of a pit end for transferring and bearing initial horizontal stresses in lower slope. The new principles provided theoretical basis for convex slope in furrow pits to reduce stripping. Similar phenomena and examples are supplied simultaneously.
Metallurgy
Application of annexation principle to the study of thermodynamic properties of Ag-Bi-In metallic melts
Jian Zhang
2003, vol. 10, no. 1, pp. 18-20.
Abstract:
Based on the measured activities, the phase diagrams and the annexation principle, the calculating models of mass action concentrations for Ag-Bi and Ag-Bi-In melts have been formulated. The calculated results agree with practice and obey the mass action law, showing that the models formulated can reflect the structural characteristics of both melts. Meanwhile, it confirms that annexation principle is applicable to the Ag-Bi-In metallic melts. The melts involving eulectic which give rise to phase separation, and in which activities exhibit positive deviation from Raoult's law is the basic cause of melts transforming from homogeneous to heterogeneous ones.
Metallurgy
Resistance characteristics of the ball packed-bed regenerator of the new-type swirl flow hot blast stove
Hongzhi Guo, Xiaohu Cheng, and  Shuchen Zhang
2003, vol. 10, no. 1, pp. 21-24.
Abstract:
A renovation project of miniaturization and high efficiency is provided for the hot blast stove.The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.
Metallurgy
Rheological behaviour of semi-solid succinonitrile-camphor alloy
Zhenyao Wang
2003, vol. 10, no. 1, pp. 25-29.
Abstract:
Rheology experiments were carried out on succinonitrile-4% (mass fraction) camphor alloy, using a Haake VT550 viscometer. The results showed that the steady state viscosity of succinonitrile-4% camphor alloy in semi-solid process can be described well by the classical power law of viscosity versus shear rate, η= m, and the test method can be used to simulate the semi-solid processing for metals. The viscosity of the organic alloy decreases with increasing shear rate at a given temperature within liquid-solid range, and the viscosity of the organic alloy slurries increases with decreasing temperature, decreases with decreasing cooling rate. The structure and viscosity of organic alloy during solidification are strongly influenced by shear rate.
Materials
Microstructure and mechanical propertiesof spray-deposited Al-Si-Fe-Cu-Mg alloy containing Mn
Feng Wang, Bin Yang, Hua Cui, Xianjin Duan, and  Jishan Zhang
2003, vol. 10, no. 1, pp. 30-34.
Abstract:
Al-20Si-5Fe-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray deposited hypereutectic Al-Si alloy were studied using optical microscopy, scanning electron microscopy, X-ray diffraction, TEM (Transmission Electron Microscope) and HREM (High-resolution Electron Microscope), DSC (Differential Scanning Calorimetry), microhardness measurement, and tensile tests. The effects of Mn on the microstructural evolution of the high-silicon aluminum alloy after extrusion and heat treatment have been examined. The results show that two kinds of phases, i. e. S (Al2CuMg) and σ(Al5Cu6,Mg2), precipitated from matrix and improved the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300℃). The tensile test results indicate that the spray-deposited Al-20Si-5Fe-3Cu-1Mg alloy has better strength than the powder metallurgy processed Al-20Si-3Cu-1Mg alloy at elevated temperature.
Materials
Evolution of zinc morphology during continuous electrodeposition
Ailing Fan, Wenhuai Tian, and  M. Kurosaki
2003, vol. 10, no. 1, pp. 35-38.
Abstract:
The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.
Materials
Processing and characterization of B4C/Cu graded composite as plasma facing component for fusion reactors
Yunhan Ling, Changchun Ge, Jiangtao Li, and  Xinde Bai
2003, vol. 10, no. 1, pp. 39-43.
Abstract:
A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances of sintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite.
Materials
Investigation on high temperature strengthening and toughening of iron-base superalloy
Xishan Xie, Zhengdong Mao, Jianxin Dong, and  Yaohe Hu
2003, vol. 10, no. 1, pp. 44-48.
Abstract:
A new modified A-286 (15Cr-28Ni-1.5Mo-lW-2Ti-Nb-Al) (mass fraction) designated as GH871 is characterized by high strengths but low ductility at 650℃ stress rupture and also high crack propagation rates at 650℃ creep and creep/fatigue interaction conditions. For improvement of ductility and crack propagation behaviour, a primary vacuum induction melting and followed electro-slag refining process (VIM+ESR) has been adopted instead of air melting and electro-slag refining process (AIM+ESR). Vacuum melted GH871 (VIM+ESR) can keep the high strength level of this alloy and improve the ductility and also decrease crack propagation rates by this alloy purification. It is a good combination of strengthening and toughening for the alloy improvement and development.
Materials
Synthesis of TiN/AlON composite ceramics
Xidong Wang, Lichun Gao, Guobao Li, and  Wenchao Li
2003, vol. 10, no. 1, pp. 49-53.
Abstract:
The synthesis process of TiN/AlON composite ceramics was studied, the thermodynamics, mechanical properties and micro-structures of TiN/AlON have also been investigated. The TiN/AlON composite ceramics has been synthesized by both hot-pressing and pressureless sintering. The characterizations of the material synthesized were analyzed with XRD (X-ray diffraction) and TEM (transmission electronic microscope). The density and toughness strength of TiN/AlON are 3.57g/cm3 and 4.74MPa·m1/2, respectively. The bending strength was measured at both room temperature and high temperatures and the results are 399 MPa (room temperature), 406 MPa (1 073 K), 417 MPa (1 273 K) and 323 MPa (1 573 K). Pattern Recognition (PR) and Artificial Neural Network (ANN) were used to optimize the parameters and to predict the expected values. A proper parameter for pressureless sintering of TiN/AlON has been obtained and testified, the parameters are temperature (1 978 K), AlN / (AlN + Al2O3) ratio (0.22), MgO (4.7%) and TiO2 (7.2%).
Materials
Sol-gel preparation and characterization of Co3O4 nanocrystals
Jinzhang Gao, Yanchun Zhao, Wu Yang, Jianniao Tian, Fei Guan., and  Yongjun Ma
2003, vol. 10, no. 1, pp. 54-57.
Abstract:
A new citrate acid-hydrazine sol-gel route for preparation of Co3O4 nanoparticles has been developed. Co3O4 nanoparticles with different particle-sizes and morphology were prepared at different heat-treatment temperatures and the pure cubic nanocrystals of Co3O4 were obtained at 600℃. The synthesis process was monitored by infrared spectroscopy (IR), thermal gravimetric and differential thermal analysis (TG-DTA). The structure and morphology of Co3O4 nanocrystals were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray-photoelectron spectroscopy (XPS). The infrared absorption bands blue-shifted with particle size decreasing, which could be attributed to increasing surface effect. XPS results showed that predominant species at surface layers of Co3O4 nanocrystals are octahedral Co (Ⅲ).
Materials
Transient spinodal decomposition during annealing of rapidly solidified Al-10Sr alloy
Yan Wang, Guodong Liu, Xiufang Bian, Yue Sun, and  Zhonghua Zhang
2003, vol. 10, no. 1, pp. 58-60.
Abstract:
Rapidly solidified Al-10Sr alloy ribbons were prepared using a single roller melt spinning technique. The annealing process of the rapidly solidified Al-10Sr alloy has been carried out using differential scanning calorimetry (DSC). The microstructure of as-annealed Al-10Sr alloy has been characterized by transmission electron microscopy (TEM). The equilibrium AUSr phase is dominant in the as-annealed alloy. Besides the Al4Sr phase, an AlSr phase is also found in the alloy isothermally annealed at 873 K for 90 min. Furthermore, a modulated nanostructure was observed in the alloy isothermally annealed at 873 K for 90 min. With further prolonged annealing time, however, the AlSr phase disappears in the as-annealed alloy. The dependence of particle size and growth rate on annealing time as well as the modulated structure shows that the occurrence of the AlSr phase may be due to the spinodal decomposition.
Materials
Influence of particle structure on electrochemical character of composite graphite
Cuiwei Du, Yujuan Zhao, Zhongbao Yu, Yinshun Wu, and  Qingguo Liu
2003, vol. 10, no. 1, pp. 61-64.
Abstract:
The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithium ion and poor compatibility with electrolyte solutions make it difficult to use in some conditions. In order to solve these problems, an epoxy-coke/graphite composite has been manufactured. The particle of composite carbonaceous material coated on non-graphitizable (hard) carbon matrix. Due to the disordered structure, the diffusion rate of lithium species in the non-graphitzable carbon is remarkably fast and less anisotropic. The process for preparing a composite carbon powder provides a promising new anode material with superior electrochemical properties for Li-ion batteries. The unique structure of epoxy-coke/graphite composite electrodes results in much better kinetics, also better recharge ability and initial charge/discharge efficiency.
Automation
A method for measuring the clock offset of two hosts in the network
Xingye Yu, Yang Yang, and  Jihai Li
2003, vol. 10, no. 1, pp. 65-68.
Abstract:
In order to detect the performance parameters of the network, for example, the network delay or delay jitter, the clock synchronization relations between the two hosts at two ends along the network must be calculated in advance. Then with the correct temporal relations between the two hosts, multimedia transmission along the network and display can occur by the proper order. A refined method based on Paxson's algorithm is proposed and testified. More accurate results can be attained by the method. By the way, the method can be used in a more complicated environment. Furthermore, an end-to-end network performance tester based on the proposed algorithm is designed and implemented.
Automation
A systematic method based on statistical pattern recognition for estimating product quality on-line
Guang Li, Huade Li, Shaoyuan Sun, and  Zhengguang Xu
2003, vol. 10, no. 1, pp. 69-73.
Abstract:
To avoid the complexity of building mechanistic models by studying the inner nature of the object, a systematic method based on statistical pattern recognition is developed in order to estimate the product quality on-line. The mapping relationship between a feature space and a product quality space can be built by using regression analysis, and in applying clustering analysis the product quality space can be partitioned automatically. Eventually, estimating product quality on-line can be accomplished by sorting the mapped data in the partitioned quality space. A concrete problem is proposed which has a relatively small ratio of training data to input variables. By implementing the method mentioned above, a satisfying result has been achieved. Furthermore, the further question about choosing suitable mapping methods is briefly discussed.
Automation
Accurate tracking control in LOM application
Yadong Liu, Congxin Li, Xingui Guo, and  Decai Wang
2003, vol. 10, no. 1, pp. 74-78.
Abstract:
The fabrication of accurate prototype from CAD model directly in short time depends on the accurate tracking control and reference trajectory planning in (Laminated Object Manufacture) LOM application. An improvement on contour accuracy is acquired by the introduction of a tracking controller and a trajectory generation policy. A model of the X-Y positioning system of LOM machine is developed as the design basis of tracking controller. The ZPETC (Zero Phase Error Tracking Controller) is used to eliminate single axis following error, thus reduce the contour error. The simulation is developed on a Maltab model based on a retrofitted LOM machine and the satisfied result is acquired.