2015 Vol. 22, No. 6
Display Method:
2015, vol. 22, no. 6, pp.
549-552.
https://doi.org/10.1007/s12613-015-1106-y
Abstract:
The chalcopyrite-adsorption characteristics and leaching properties of Sulfolobus metallicus (S. metallicus) YN24 were investigated in this study. The effects of zeta potentials of S. metallicus samples on chalcopyrite cultivated with distinct sources of energy were similar. Regardless of the energy source cultivated, all of the investigated S. metallicus samples adhered rapidly to the chalcopyrite surface, with an adhesion plateau being reached within 60 min. However, the mineral-cultured S. metallicus adsorbed more strongly onto chalcopyrite than the sulfur-cultured S. metallicus did. Furthermore, chalcopyrite-leaching tests suggested that the copper-leaching ability of the mineral-cultured S. metallicus was also greater than that of unadapted S. metallicus. Therefore, the results provide insights into the mechanism of mineral-surface adsorption of microorganisms that helps enhance the copper-leaching rate.
The chalcopyrite-adsorption characteristics and leaching properties of Sulfolobus metallicus (S. metallicus) YN24 were investigated in this study. The effects of zeta potentials of S. metallicus samples on chalcopyrite cultivated with distinct sources of energy were similar. Regardless of the energy source cultivated, all of the investigated S. metallicus samples adhered rapidly to the chalcopyrite surface, with an adhesion plateau being reached within 60 min. However, the mineral-cultured S. metallicus adsorbed more strongly onto chalcopyrite than the sulfur-cultured S. metallicus did. Furthermore, chalcopyrite-leaching tests suggested that the copper-leaching ability of the mineral-cultured S. metallicus was also greater than that of unadapted S. metallicus. Therefore, the results provide insights into the mechanism of mineral-surface adsorption of microorganisms that helps enhance the copper-leaching rate.
2015, vol. 22, no. 6, pp.
553-561.
https://doi.org/10.1007/s12613-015-1107-x
Abstract:
Sinter body strength, which reflects the strength of sinter, plays an important role in the improvement of sinter. In this study, the sinter body strengths of iron ores were measured using a microsintering method. The relationship between the chemical composition and sinter body strength was discussed. Moreover, sinter-pot tests were performed. The effects of sinter body strength on the sintering indexes were then elucidated, and the bottom limit of sinter body strength of blending ores was confirmed. In the results, the compressive strengths (CSs) of iron ores are observed to decrease with the increasing of the contents of loss on ignition (LOI), SiO2, and Al2O3; however, LOI of less than 3wt% does not substantially influence the CSs of fine ores. In the case of similar mineral composition, the porosity, in particular, the ratio between the number of large pores and the total number of pores, strongly influences the sinter body strength. With an increase of the blending-ore CSs used in sinter-pot tests, the yield, productivity, and tumbler strength increase, and the solid fuel consumption decreases. The CSs of the blending ores only slightly affect the sintering time. The CS bottom limit of the blending ores is 310 N. When the CSs of the blending ores increase by 10%, the yield, productivity, and tumbler index increase by 1.9%, 2.8%, and 2.0%, respectively, and the solid fuel consumption decreases by 1.9%.
Sinter body strength, which reflects the strength of sinter, plays an important role in the improvement of sinter. In this study, the sinter body strengths of iron ores were measured using a microsintering method. The relationship between the chemical composition and sinter body strength was discussed. Moreover, sinter-pot tests were performed. The effects of sinter body strength on the sintering indexes were then elucidated, and the bottom limit of sinter body strength of blending ores was confirmed. In the results, the compressive strengths (CSs) of iron ores are observed to decrease with the increasing of the contents of loss on ignition (LOI), SiO2, and Al2O3; however, LOI of less than 3wt% does not substantially influence the CSs of fine ores. In the case of similar mineral composition, the porosity, in particular, the ratio between the number of large pores and the total number of pores, strongly influences the sinter body strength. With an increase of the blending-ore CSs used in sinter-pot tests, the yield, productivity, and tumbler strength increase, and the solid fuel consumption decreases. The CSs of the blending ores only slightly affect the sintering time. The CS bottom limit of the blending ores is 310 N. When the CSs of the blending ores increase by 10%, the yield, productivity, and tumbler index increase by 1.9%, 2.8%, and 2.0%, respectively, and the solid fuel consumption decreases by 1.9%.
2015, vol. 22, no. 6, pp.
562-572.
https://doi.org/10.1007/s12613-015-1108-9
Abstract:
The reduction of high-chromium vanadium-titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2-CO-CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows:Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; (Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeCr2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.
The reduction of high-chromium vanadium-titanium magnetite as a typical titanomagnetite containing 0.95wt% V2O5 and 0.61wt% Cr2O3 by H2-CO-CO2 gas mixtures was investigated from 1223 to 1373 K. Both the reduction degree and reduction rate increase with increasing temperature and increasing hydrogen content. At a temperature of 1373 K, an H2/CO ratio of 5/2 by volume, and a reduction time of 40 min, the degree of reduction reaches 95%. The phase transformation during reduction is hypothesized to proceed as follows:Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; (Cr0.15V0.85)2O3 → Fe2VO4; and Cr1.3Fe0.7O3 → FeCr2O4. The reduction is controlled by the mixed internal diffusion and interfacial reaction at the initial stage; however, the interfacial reaction is dominant. As the reduction proceeds, the internal diffusion becomes the controlling step.
2015, vol. 22, no. 6, pp.
573-581.
https://doi.org/10.1007/s12613-015-1109-8
Abstract:
The recovery of metal oxides from stainless steel dust using C (graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr (L'Crm/s) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO:SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L'Crm/s, and a linear relationship between L'Crm/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.
The recovery of metal oxides from stainless steel dust using C (graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr (L'Crm/s) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO:SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L'Crm/s, and a linear relationship between L'Crm/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.
2015, vol. 22, no. 6, pp.
582-588.
https://doi.org/10.1007/s12613-015-1110-2
Abstract:
The decomposition of copper anode slime heated by microwave energy in a sulfuric acid medium was investigated. Leaching experiments were carried out in a multi-mode cavity with microwave assistance. The leaching process parameters were optimized using response surface methodology (RSM). Under the optimized conditions, the leaching efficiencies of copper and tellurium were 99.56% ±0.16% and 98.68% ±0.12%, respectively. Meanwhile, a conventional leaching experiment was performed in order to evaluate the influence of microwave radiation. The mechanism of microwave-assisted leaching of copper anode slime was also investigated. In the results, the microwave technology is demonstrated to have a great potential to improve the leaching efficiency and reduce the leaching time. The enhanced recoveries of copper and tellurium are believed to result from the presence of a temperature gradient due to the shallow microwave penetration depth and the superheating at the solid-liquid interface.
The decomposition of copper anode slime heated by microwave energy in a sulfuric acid medium was investigated. Leaching experiments were carried out in a multi-mode cavity with microwave assistance. The leaching process parameters were optimized using response surface methodology (RSM). Under the optimized conditions, the leaching efficiencies of copper and tellurium were 99.56% ±0.16% and 98.68% ±0.12%, respectively. Meanwhile, a conventional leaching experiment was performed in order to evaluate the influence of microwave radiation. The mechanism of microwave-assisted leaching of copper anode slime was also investigated. In the results, the microwave technology is demonstrated to have a great potential to improve the leaching efficiency and reduce the leaching time. The enhanced recoveries of copper and tellurium are believed to result from the presence of a temperature gradient due to the shallow microwave penetration depth and the superheating at the solid-liquid interface.
2015, vol. 22, no. 6, pp.
589-597.
https://doi.org/10.1007/s12613-015-1111-1
Abstract:
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200℃·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24℃·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200℃·s-1 and 0.43℃·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200℃·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24℃·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200℃·s-1 and 0.43℃·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
2015, vol. 22, no. 6, pp.
598-603.
https://doi.org/10.1007/s12613-015-1112-0
Abstract:
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.
A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.
2015, vol. 22, no. 6, pp.
604-612.
https://doi.org/10.1007/s12613-015-1113-z
Abstract:
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy (HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy (HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.
2015, vol. 22, no. 6, pp.
613-619.
https://doi.org/10.1007/s12613-015-1114-y
Abstract:
Fe-based alloy coatings containing TiB2-TiN-(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1-2.8 mm from the coating surface is about Hv0.2 551.5.
Fe-based alloy coatings containing TiB2-TiN-(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1-2.8 mm from the coating surface is about Hv0.2 551.5.
2015, vol. 22, no. 6, pp.
620-626.
https://doi.org/10.1007/s12613-015-1115-x
Abstract:
The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and differential scanning calorimetry (DSC). The examination indicates the presence of severe chemical segregation in the dendritic as-cast structure because of solidification. This chemical segregation completely impedes the intrinsic martensitic transformation. Annealing at 1223 K for 24 h is identified as the threshold annealing condition to eliminate the microstructural segregation and begin the martensitic transformation, as indicated by a broad and obscure feature. Annealing at 1273 K for 24-48 h is found to be effective at promoting notably the martensitic transformation, but the martensitic transformation exhibits a multiple-step feature. Complete homogeneity is achieved by annealing at 1273 K for 72 h, which produces a sharp, single-step martensitic transformation. The microstructural evolution and the valence electron concentrations of alloys (e/a ratio) are evaluated, which are reflective of the degree of compositional homogeneity of alloys, confirming that high annealing temperature and long holding time are vital to reveal the intrinsic martensitic behavior of this alloy. The adequately homogenized alloy displays a martensitic transformation at 292 K and an enthalpy of 11.2 J/g.
The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and differential scanning calorimetry (DSC). The examination indicates the presence of severe chemical segregation in the dendritic as-cast structure because of solidification. This chemical segregation completely impedes the intrinsic martensitic transformation. Annealing at 1223 K for 24 h is identified as the threshold annealing condition to eliminate the microstructural segregation and begin the martensitic transformation, as indicated by a broad and obscure feature. Annealing at 1273 K for 24-48 h is found to be effective at promoting notably the martensitic transformation, but the martensitic transformation exhibits a multiple-step feature. Complete homogeneity is achieved by annealing at 1273 K for 72 h, which produces a sharp, single-step martensitic transformation. The microstructural evolution and the valence electron concentrations of alloys (e/a ratio) are evaluated, which are reflective of the degree of compositional homogeneity of alloys, confirming that high annealing temperature and long holding time are vital to reveal the intrinsic martensitic behavior of this alloy. The adequately homogenized alloy displays a martensitic transformation at 292 K and an enthalpy of 11.2 J/g.
2015, vol. 22, no. 6, pp.
627-638.
https://doi.org/10.1007/s12613-015-1116-9
Abstract:
The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.
The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.
2015, vol. 22, no. 6, pp.
639-647.
https://doi.org/10.1007/s12613-015-1117-8
Abstract:
A two-step equal channel angular extrusion (ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains (~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.
A two-step equal channel angular extrusion (ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains (~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.
2015, vol. 22, no. 6, pp.
648-653.
https://doi.org/10.1007/s12613-015-1118-7
Abstract:
Four Zr-Cu-Fe-Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr-Cu-Fe-Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.
Four Zr-Cu-Fe-Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr-Cu-Fe-Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.
2015, vol. 22, no. 6, pp.
654-659.
https://doi.org/10.1007/s12613-015-1119-6
Abstract:
The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock's flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40℃, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.
The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock's flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40℃, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.