316L stainless steel (SS 316L) is quite attractive as bipolar plates in proton exchange membrane fuel cells (PEMFC). In this study, graphite-polypyrrole was coated on SS 316L by the method of cyclic voltammetry. The surface morphology and chemical composition of the graphite-polypyrrole composite coating were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A simulated working environment of PEMFC was applied for testing the corrosion properties of graphite-polypyrrole coated SS 316L. The current densities in the simulated PEMFC anode and cathode conditions are around 3×10-9 and 9×10-5 A·cm-2, respectively. In addition, the interfacial contact resistance (ICR) was also investigated. The ICR value of graphite-polypyrrole coated SS 316L is much lower than that of bare SS 316L. Therefore, graphite-polypyrrole coated SS 316L indicates a great potential for the application in PEMFC.