Shu-lin Huang, Hai-bo Feng, Ming-gang Zhu, An-hua Li, Yan-feng Li, Ya-chao Sun, Yue Zhang, and Wei Li, Optimal design of sintered Ce9Nd21FebalB1 magnets with a low-melting-point (Ce,Nd)-rich phase, Int. J. Miner. Metall. Mater., 22(2015), No. 4, pp.417-422. https://dx.doi.org/10.1007/s12613-015-1088-9
Cite this article as: Shu-lin Huang, Hai-bo Feng, Ming-gang Zhu, An-hua Li, Yan-feng Li, Ya-chao Sun, Yue Zhang, and Wei Li, Optimal design of sintered Ce9Nd21FebalB1 magnets with a low-melting-point (Ce,Nd)-rich phase, Int. J. Miner. Metall. Mater., 22(2015), No. 4, pp.417-422. https://dx.doi.org/10.1007/s12613-015-1088-9

Optimal design of sintered Ce9Nd21FebalB1 magnets with a low-melting-point (Ce,Nd)-rich phase

  • A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron microscopy (TEM) images indicated the presence of (Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalB1 sintered magnets; the prepared magnets exhibited a residual induction, coercivity, and energy product of 1.353 T, 759 kA/m, and 342 kJ/m3, respectively.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return