U. K. N. Din, T. H. T. Aziz, M. M. Salleh, and A. A. Umar, Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process, Int. J. Miner. Metall. Mater., 23(2016), No. 1, pp.109-115. https://dx.doi.org/10.1007/s12613-016-1217-0
Cite this article as:
U. K. N. Din, T. H. T. Aziz, M. M. Salleh, and A. A. Umar, Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process, Int. J. Miner. Metall. Mater., 23(2016), No. 1, pp.109-115. https://dx.doi.org/10.1007/s12613-016-1217-0
U. K. N. Din, T. H. T. Aziz, M. M. Salleh, and A. A. Umar, Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process, Int. J. Miner. Metall. Mater., 23(2016), No. 1, pp.109-115. https://dx.doi.org/10.1007/s12613-016-1217-0
Cite this article as:
U. K. N. Din, T. H. T. Aziz, M. M. Salleh, and A. A. Umar, Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process, Int. J. Miner. Metall. Mater., 23(2016), No. 1, pp.109-115. https://dx.doi.org/10.1007/s12613-016-1217-0
We report an experimental route for synthesizing perovskite-structured strontium titanate (SrTiO3) nanocubes using an alkali hydrothermal process at low temperatures without further heating. Furthermore, we studied the influence of heating time (at 180℃) on the crystallinity, morphology, and perovskite phase formation of SrTiO3. The SrTiO3 powder, which is formed via nanocube agglomeration, transforms into cubic particles with a particle size of 120–150 nm after 6 h of hydrothermal sintering. The crystallinity and percentage of the perovskite phase in the product increased with heating time. The cubic particles contained 31.24at% anatase TiO2 that originated from the precursor. By varying the weight ratio of anatase TiO2 used to react with the strontium salt precursor, we reduced the anatase-TiO2 content to 18.8at%. However, the average particle size increased when the anatase-TiO2 content decreased.
Vinola Johnson, Vinitha Gandhiraj. Enhanced nonlinear characteristics of polymer-perovskite hybrid (PVA/CMC/LaAlO3) fabricated via solution casting process for optical limiting applications. Journal of Materials Science: Materials in Electronics, 2023, 34(31)
DOI:10.1007/s10854-023-11533-0
2.
A.A. Al-Muntaser, Rami Adel Pashameah, Kamal Sharma, et al. Boosting of structural, optical, and dielectric properties of PVA/CMC polymer blend using SrTiO3 perovskite nanoparticles for advanced optoelectronic applications. Optical Materials, 2022, 132: 112799.
DOI:10.1016/j.optmat.2022.112799
3.
Ummi Kalsom Noor Din, Muhamad Mat Salleh, Tengku Hasnan Tengku Aziz, et al. On the performance of polymer-inorganic perovskite oxide composite light-emitting diodes: The effect of perovskite SrTiO3 additives. Nanomaterials and Nanotechnology, 2021, 11: 184798042098777.
DOI:10.1177/1847980420987774
4.
Monika Klusáčková, Roman Nebel, Petr Krtil, et al. Photo‐electrochemical activity and selectivity of nanocrystalline BaTiO3 electrodes in water oxidation. Electrochemical Science Advances, 2021, 1(2)
DOI:10.1002/elsa.202000005
5.
N Yalini Devi, P Rajasekaran, K Vijayakumar, et al. Enhancement of thermoelectric power factor of hydrothermally synthesised SrTiO3 nanostructures. Materials Research Express, 2020, 7(1): 015094.
DOI:10.1088/2053-1591/ab6c96
6.
Francesco Pellegrino, Fabrizio Sordello, Lorenzo Mino, et al. Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra. Nanomaterials, 2020, 10(9): 1892.
DOI:10.3390/nano10091892
7.
Yuyu Bu, Jin-Ping Ao. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy & Environment, 2017, 2(4): 331.
DOI:10.1016/j.gee.2017.02.003
8.
U.K.N. Din, M.M. Salleh, T.H.T. Aziz, et al. Composition dependence of photoluminescence properties of poly(9, 9-di- n -hexylfluorenyl-2, 7-diyl) with perovskite-structured SrTiO 3 nanocomposites. Superlattices and Microstructures, 2016, 93: 153.
DOI:10.1016/j.spmi.2016.03.011