Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys
-
Graphical Abstract
-
Abstract
The present research aims to establish a quantitative relation between microstructure and chemical composition (i.e., Ti, Al, and Nb) of newly designed nickel-based superalloys. This research attempts to identify an optimum microstructure at which the minimum quantities of γ/γ' and γ/γ″ compounds are achieved and the best castability is predicted. The results demonstrate that the highest quantity of intermetallic eutectics (i.e., 41.5wt%) is formed at 9.8wt% (Ti + Al). A significant quantity of intermetallics formed in superalloy 1 (with a composition of γ-9.8wt% (Ti + Al)), which can deteriorate its castability. The type and morphology of the eutectics changed and the amount considerably decreased with decreasing Ti + Al content in superalloy 2 (with a composition of γ-7.6wt% (Ti + Al), 1.5wt% Nb). Thus, it is predicted that the castability would improve for superalloy 2. The same trend was observed for superalloy 4 (with a composition of γ-3.7wt% (Ti + Al), 4.4wt% Nb). This means that the amount of Laves increases with increasing Nb (to 4.4wt%) and decreasing Ti + Al (to 3.7wt%) in superalloy 4. The best castability was predicted for superalloy 3 (with a composition of γ-5.7wt% (Ti + Al), 2.8wt% Nb).
-
-