Cite this article as: |
Wei Liu, Qing-he Zhao, and Shuan-zhu Li, Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 55-63. https://doi.org/10.1007/s12613-017-1378-5 |
Wei Liu E-mail: weiliu@ustb.edu.cn
[1] |
T. Ishikawa, M. Kumagai, A. Yasukawa, and K. Kandori, Characterization of rust on weathering steel by gas adsorption, Corrosion, 57(2001), No. 4, p. 346.
|
[2] |
M. Yamashita, K. Asami, T. Ishikawa, T. Ohtsuka, H. Tamura, and T. Misawat, Characterization of rust layer on weathering steel exposed to the atmosphere for 17 years, Corros. Eng., 50(2001), No. 11, p. 521.
|
[3] |
T. Ishikawa, R. Tanaka, M. Minamigawa, K. Kandori, H. Tanaka, and T. Nakayama, Assessment of rust layers formed on weathering steel in saline environment by gas adsorption, Mater. Corros., 66(2015), No. 12, p. 1460.
|
[4] |
T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, and S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci., 49(2007), No. 3, p. 1468.
|
[5] |
T. Ishikawa, A. Maeda, K. Kandori, and A. Tahara, Characterization of rust on Fe-Cr, Fe-Ni, and Fe-Cu binary alloys by Fourier transform infrared and N2 adsorption, Corrosion, 62(2006), No. 7, p. 559.
|
[6] |
Q. Zhao, W. Liu, J. Zhao, D. Zhang, P. Liu, and M. Lu, Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2-O2-H2S-SO2 wet-dry corrosion environment of cargo oil tankers, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 829.
|
[7] |
Q. Zhao, W. Liu, J. Yang, Y. Zhu, B. Zhang, and M. Lu, Corrosion behavior of low alloy steels in a wet-dry acid humid environment, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1076.
|
[8] |
Q. Zhao, W. Liu, S. Li, B. Zhang, Y. Zhu, and M. Lu, Effects of W and Mo additions on wet-dry acid corrosion behavior of low-alloy steels under different O2 concentrations, Acta Metall. Sin. Engl. Lett., 29(2016), No. 10, p. 951.
|
[9] |
J. Guo, S. Yang, C. Shang, Y. Wang, and X. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment, Corros. Sci., 51(2009), No. 2, p. 242.
|
[10] |
S. Hœrlé, F. Mazaudier, P. Dillmann, and G. Santarini, Advances in understanding atmospheric corrosion of iron. Ⅱ. Mechanistic modelling of wet-dry cycles, Corros. Sci., 46(2004), No. 6, p. 1431.
|
[11] |
H. Tamura, The role of rusts in corrosion and corrosion protection of iron and steel, Corros. Sci., 50(2008), No. 7, p. 1872.
|
[12] |
M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels:a review, Corros. Sci., 77(2013), p. 6.
|
[13] |
H. Antony, S. Peulon, L. Legrand, and A. Chaussé, Electrochemical synthesis of lepidocrocite thin films on gold substrate:EQCM, IRRAS, SEM and XRD study, Electrochim. Acta, 50(2004), No. 4, p. 1015.
|
[14] |
C. G. Soares, Y. Garbatov, A. Zayed, and G. Wang, Corrosion wastage model for ship crude oil tanks, Corros. Sci., 50(2008), No. 11, p. 3095.
|
[15] |
J. Guo, C. J. Shang, S. W. Yang, Y. Wang, L. W. Wang, and X. L. He, Effect of carbon content on mechanical properties and weather resistance of high performance bridge steels, J. Iron Steel Res. Int., 16(2009), No. 6, p. 63.
|
[16] |
Ph. Dillmann, F. Mazaudier, and S. Hœrlé, Advances in understanding atmospheric corrosion of iron:I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corros. Sci., 46(2004), No. 6, p. 1401.
|
[17] |
M. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers, Mater. Sci. Eng. A, 444(2007), No. 1-2, p. 227.
|
[18] |
P. Yi, K. Xiao, K. K. Ding, X. Wang, L. D. Yan, C. L. Mao, C. F. Dong, and X. G. Li, Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1183.
|
[19] |
L. Hao, S. Zhang, J. Dong, and W. Ke, Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere, Corros. Sci., 58(2012), p. 175.
|
[20] |
W. J. Chen, L. Hao, J. H. Dong, and W. Ke, Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere, Corros. Sci., 83(2014), p. 155.
|
[21] |
J. Zhong, M. Sun, D. Liu, X. Li, and T. Liu, Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 282.
|
[22] |
H. Antony, L. Legrand, L. Maréchal, S. Perrin, P. Dillmann, and A. Chaussé, Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25℃, Electrochim. Acta, 51(2005), No. 4, p. 745.
|
[23] |
C. W. Du, T. L. Zhao, Z. Y. Liu, X. G. Li, and D. W. Zhang, Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 176.
|
[24] |
X. Zhang, S. Yang, W. Zhang, H. Guo, and X. He, Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles, Corros. Sci., 82(2014), p. 165.
|
[25] |
S. Hara, T. Kamimura, H. Miyuki, and M. Yamashita, Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge, Corros. Sci., 49(2007), No. 3, p. 1131.
|