Cite this article as: |
Li-cai Fu, Wen Qin, Jun Yang, Wei-min Liu, and Ling-ping Zhou, Corrosion-wear behavior of nanocrystalline Fe88Si12 alloy in acid and alkaline solutions, Int. J. Miner. Metall. Mater., 24(2017), No. 1, pp. 75-82. https://doi.org/10.1007/s12613-017-1380-y |
Li-cai Fu E-mail: lfu@hnu.edu.cn
[1] |
R. J. K. Wood, Tribo-corrosion of coatings:a review, J. Phys. D, 40(2007), No. 18, p. 5502.
|
[2] |
H. Meng, X. Hu, and A. Neville, A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design, Wear, 263(2007), No. 1-6, p. 355.
|
[3] |
Q. Y. Wang, S. L. Bai, and Z. D. Liu, Study on cavitation erosion-corrosion behavior of mild steel under synergistic vibration generated by ultrasonic excitation, Tribol. Trans., 57(2014), No. 4, p. 603.
|
[4] |
R. J. K. Wood, Erosion-corrosion interactions and their effect on marine and offshore materials, Wear, 261(2006), No. 9, p. 1012.
|
[5] |
G. H. Kelsall and R. A. Williams, Electrochemical behavior of ferrosilicides (FexSi) in neutral and alkaline aqueous electrolytes, J. Electrochem. Soc., 138(1991), No. 4, p. 941.
|
[6] |
K. Fushimi, A. L. Kirsten, and H. Habazaki, Heterogeneous hydrogen evolution on corroding Fe-3 at.% Si surface observed by scanning electrochemical microscopy, Electrochim. Acta, 52(2007), No. 12, p. 4246.
|
[7] |
T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion, 56(2000), No. 9, p. 935.
|
[8] |
S. Giordana, I. Mabille, and C. Fiaud, Inhibiting effect of silicates on corrosion of low silicon alloyed steels in neutral non-oxidising conditions at 90℃, Corros. Eng. Sci. Technol., 38(2003), No. 4, p. 291.
|
[9] |
S. Giordana and C. Fiaud, Corrosion behaviour of low-Si alloyed steels in neutral reducing conditions at 90℃, Electrochim. Acta, 47(2002), No. 11, p. 1683.
|
[10] |
M. Mohr, L. Daccache, S. Horvat, K. Brühne, T. Jacob, and H. J. Fecht, Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films, Acta Mater., 122(2017), p. 92.
|
[11] |
X. Y. Li, W. Liu, Y. Xu, C. S. Liu, B. C. Pan, Y. Liang, Q. F. Fang, J. L. Chen, G. N. Luo, G. H. Lu, and Z. Wang, Radiation resistance of nano-crystalline iron:coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries, Acta Mater., 109(2016), p. 115.
|
[12] |
H. A. Padilla, B. L. Boyce, C. C. Battaile, and S. V. Prasad, Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity, Wear, 297(2013), No. 1-2, p. 860.
|
[13] |
H. Sato, R. Tsuzuki, Y. Kaneko, and Y. Watanabe, Nanocrystallized layer formed by sliding wear under high stress for pure Cu, Jpn. J. Appl. Phys., 55(2016), article No. 01AE08.
|
[14] |
N. S. Nia, J. Creus, X. Feaugas, and C. Savall, Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni-W nanocrystalline alloys, Appl. Surf. Sci., 370(2016), p. 149.
|
[15] |
J. N. Balaraju, V. E. Selvi, and K. S. Rajam, Electrochemical behavior of nanocrystalline Ni-P alloys containing tin and tungsten, Prot. Met. Phys. Chem. Surf., 46(2010), No. 6, p. 686.
|
[16] |
F. K. Yan, N. R. Tao, C. Pan, and L. Liu, Microstructures and corrosion behaviors of an austenitic stainless steel strengthened by nanotwinned austenitic grains, Adv. Eng. Mater., 18(2016), No. 4, p. 650.
|
[17] |
R. Mishra and R. Balasubramaniam, Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel, Corros. Sci., 46(2004), No. 12, p. 3019.
|
[18] |
H. B. Lee, C. S. Lin, D. S. Wuu, and C. Y. Lee, Wear and corrosion investigation on the electrodeposited Ni-P coating, Tribol. Trans., 54(2011), No. 4, p. 497.
|
[19] |
N. P. Wasekar and G. Sundararajan, Sliding wear behavior of electrodeposited Ni-W alloy and hard chrome coatings, Wear, 342-343(2015), p. 340.
|
[20] |
C. S. Liu, F. Su, and J. Z. Liang, Nanocrystalline Co-Ni alloy coating produced with supercritical carbon dioxide assisted electrodeposition with excellent wear and corrosion resistance, Surf. Coat. Technol., 292(2016), p. 37.
|
[21] |
J. H. Kim, A. Amanov, Y. S. Pyun, I. S. Cho, J. H. Park, and Y. S. Jang, Enhancement of fretting wear performance of Al-Si alloy by ultrasonic nanocrystalline surface modification (UNSM) technique, Sci. Adv. Mater., 8(2016), No. 2, p. 283.
|
[22] |
Z. W. Wang, Y. Yan, and L. J. Qiao, Tribocorrosion behavior of nanocrystalline metals:a review, Mate. Trans., 56(2015), No. 11, p. 1759.
|
[23] |
L. C. Fu, J. Yang, Q. L. Bi, J. Q. Ma, and W. M. Liu, Combustion synthesis and characterization of bulk nanocrystalline Fe88Si12 alloy, IEEE Trans. Nanotechnol., 9(2010), No. 2, p. 218.
|
[24] |
Y. Zhang, X. Yin, J. Wang, and F. Yan, Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater, Corros. Sci., 88(2014), p. 423.
|
[25] |
J. F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(1953), No. 8, p. 981.
|
[26] |
Y. Toru and H. Peter, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), No. 8, p. 2441.
|
[27] |
A. B. Aghdam and M. M. Khonsari, On the correlation between wear and entropy in dry sliding contact, Wear, 270(2011), No. 11-12, p. 781.
|
[28] |
U. Wolff, F. Schneider, K. Mummert, and L. Schultz, Stability and electrochemical properties of passive layers on Fe-Si alloys, Corrosion, 56(2000), No. 12, p. 1195.
|
[29] |
Y. Omurtag and M. Doruk, Some investigations on the corrosion characteristics of Fe-Si alloys, Corros. Sci., 10(1970), No. 4, p. 225.
|
[30] |
G. Palumbo and K. T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metall. Mater., 38(1990), No. 11, p. 2343.
|
[31] |
P. Henry, J. Takadoum, and P. Berçot, Depassivation of some metals by sliding friction, Corros Sci., 53(2011), No. 1, p. 320.
|