Yan-xiang Liu, Jian-liang Zhang, Zhi-yu Wang, Ke-xin Jiao, Guo-hua Zhang,  and Kuo-chih Chou, Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 130-138. https://doi.org/10.1007/s12613-017-1387-4
Cite this article as:
Yan-xiang Liu, Jian-liang Zhang, Zhi-yu Wang, Ke-xin Jiao, Guo-hua Zhang,  and Kuo-chih Chou, Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 130-138. https://doi.org/10.1007/s12613-017-1387-4
Research Article

Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

+ Author Affiliations
  • Corresponding author:

    Ke-xin Jiao    E-mail: jiaokexin_ustb@126.com

  • Received: 25 July 2016Revised: 13 September 2016Accepted: 22 October 2016
  • To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces,experiments were carried out based on the laboratory-scale packed bed systems.It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content.The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%,whereas it increases when the FeO content exceeds 10wt%.Meanwhile,the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%.Moreover,slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke.The slag/coke interface is divided into three layers:slag layer,iron-rich layer,and coke layer.TiO2 in the slag is reduced by carbon,and the generated Ti diffuses into iron.
  • loading
  • [1]
    X.L. Wang, Ferrous Metallurgy (Ironmaking), The Metallurgy Industry Press, Beijing, 2000.
    [2]
    M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, and R.J. Nightingale, The effect of sulfur concentration in liquid iron on mineral layer formation during coke dissolution, Metall. Mater. Trans. B, 42(2011), No. 4, p. 642.
    [3]
    A.K. Biswas, Principles of Blast Furnace Ironmaking:Theory and Practice, Cootha Publishing House, Brisbane, 1981.
    [4]
    H.L. Shulman, C.F. Ullrich, and N. Wells, Performance of packed columns:I. Total, static, and operating holdups, AlChE J., 1(1955), No. 2, p. 247.
    [5]
    S.J. Chew, G.X. Wang, A.B. Yu, and P. Zulli, Experimental study of liquid flow in blast furnace cohesive zone, Ironmaking Steelmaking, 24(1997), No. 5, p. 392.
    [6]
    S.J. Chew, P. Zulli, and A.B. Yu, Modelling of liquid flow in the blast furnace:theoretical analysis of the effects of gas, liquid and packing properties, ISIJ Int., 41(2001), No. 10, p. 1112.
    [7]
    H. Kawabata, Z. Liu, F. Fujita, and T. Usui, Characteristics of liquid hold-ups in a soaked and unsoaked fixed bed, ISIJ Int., 45(2005), No. 10, p. 1466.
    [8]
    H. Kawabata, K. Shinmyou, T. Harada, and T. Usui, Influence of channeling factor on liquid hold-ups in an initially unsoaked bed, ISIJ Int., 45(2005), No. 10, p. 1474.
    [9]
    K. Saito, K.I. Ohno, T. Miki, Y. Sasaki, and M. Hino, Behavior of ironmaking slag permeation to carbonaceous material layer, ISIJ Int., 46(2006), No. 12, p. 1783.
    [10]
    G.S. Gupta and K. Naveen, Quantification of liquid holdup in the dropping zone of a blast furnace:a cold model study, Metall. Mater. Trans. B, 38(2007), No. 2, p. 203.
    [11]
    Y. Bando, S. Hayashi, A. Matsubara, and M. Nakamura, Effects of packed structure and liquid properties on liquid flow behavior in lower part of blast furnace, ISIJ Int., 45(2005), No. 10, p. 1461.
    [12]
    W.M. Husslage, T. Bakker, A.G.S. Steeghs, M.A. Reuter, and R.H. Heerema, Flow of molten slag and iron at 1500℃ to 1600℃ through packed coke beds, Metall. Mater. Trans. B, 36(2005), No. 6, p. 765.
    [13]
    Y.L. Cao, Y.W. Dong, Z.H. Jiang, H.B. Cao, D. Hou, and Q.L. Feng, Research on droplet formation and dripping behavior during the electroslag remelting process, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 399.
    [14]
    H.L. George, R. Longbottom, S. Chew, D. Pinson, and B. Monaghan, Characterisation of coke packed beds after liquid slag flow at 1500℃ by image analysis, ISIJ Int., 54(2014), No. 8, p. 1790.
    [15]
    M. Shin, J.S. Oh, and J. Lee, Carburization, melting and dripping of iron through coke bed, ISIJ Int., 55(2015), No. 10, p. 2056.
    [16]
    D. Jang, M. Shin, J.S. Oh, H.S. Kim, S.H. Yi, and J. Lee, Static holdup of liquid slag in carbonaceous beds, ISIJ Int., 54(2014), No. 6, p. 1251.
    [17]
    S. Natsui, T. Kikuchi, R.O. Suzuki, T. Kon, S. Ueda, and H. Nogami, Characterization of liquid trickle flow in poor-wetting packed bed, ISIJ Int., 55(2015), No. 6, p. 1259.
    [18]
    J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291.
    [19]
    Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283.
    [20]
    P.A. Tanskanen, S.M. Huttunen, P.H. Mannila, and J.J. Härkki, Experimental simulations of primary slag formation in blast furnace, Ironmaking Steelmaking, 29(2002), No. 4, p. 281.
    [21]
    H. Park, J.H. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.
    [22]
    C. Feng, M.S. Chu, J. Tang, J. Qin, F. Li, and Z.G. Liu, Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 868.
    [23]
    G.H. Zhang, Y.L. Zhen, and K.C. Chou, Influence of TiC on the viscosity of CaO-MgO-Al2O3-SiO2-TiC suspension system, ISIJ Int., 55(2015), No. 5, p. 922.
    [24]
    Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), No. 1, p. 155.
    [25]
    K.X. Jiao, J.L. Zhang, Z.J. Liu, M. Xu, and F. Liu, Formation mechanism of the protective layer in a blast furnace hearth, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1017.
    [26]
    W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, and Y.T. Tang, Novel blast furnace operation process involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 501.
    [27]
    M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, and R.J. Nightingale, Observations of the mineral matter material present at the coke/iron interface during coke dissolution into iron, ISIJ Int., 47(2007), No. 7, p. 973.
    [28]
    B.J. Monaghan, M.W. Chapman, and S.A. Nightingale, Carbon transfer in the lower zone of a blast furnace, Steel Res. Int., 81(2010), No. 10, p. 829.
    [29]
    S.S. Gornostayev, T.M.J. Fabritius, O. Kerkkonen, and J.J. Härkki, Fe-Si droplets associated with graphite on blast furnace coke, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 478.
    [30]
    K.J. Li, J.L. Zhang, Z.J. Liu, M. Barati, J.B. Zhong, M.F. Wei, G.W. Wang, K.X. Jiao, and T.J. Yang, Interfaces between coke, slag, and metal in the tuyere level of a blast furnace, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(503) PDF Downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return