Mohamed Reda Boudchicha, Fausto Rubio, and Slimane Achour, Synthesis of glass ceramics from kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp.194-201. https://dx.doi.org/10.1007/s12613-017-1395-4
Cite this article as: Mohamed Reda Boudchicha, Fausto Rubio, and Slimane Achour, Synthesis of glass ceramics from kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp.194-201. https://dx.doi.org/10.1007/s12613-017-1395-4

Synthesis of glass ceramics from kaolin and dolomite mixture

  • Cordierite-and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (Ea) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850℃, whereas the µ-cordierite phase appears after heat treatment at 950℃. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000℃. Complete densification is achieved at 950℃; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000℃ and 1100℃. The highest Vickers hardness of 6 GPa is also obtained at 950℃. However, a substantial decrease in hardness is recorded at 1000℃; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return