Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang,  and Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 216-221. https://doi.org/10.1007/s12613-017-1398-1
Cite this article as:
Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang,  and Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, pp. 216-221. https://doi.org/10.1007/s12613-017-1398-1
Research Article

Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder

+ Author Affiliations
  • Corresponding author:

    Zhen Ji    E-mail: jizhen@mater.ustb.edu.cn

  • Received: 24 June 2016Revised: 22 July 2016Accepted: 22 October 2016
  • Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.
  • loading
  • [1]
    Y. Mu, W.C. Zhou, Y. Hu, D.H. Ding, F. Luo, and Y.C. Qing, Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process, J. Alloys Compd., 637(2015), p. 261.
    [2]
    R. Panwar, V. Agarwala, and D. Singh, A cost effective solution for development of broadband radar absorbing material using electronic waste, Ceram. Int., 41(2015), No. 2. p. 2923.
    [3]
    Z.N. Yang, F. Luo, M. Sun, J.S. Xu, W.C. Zhou, Y.C. Qing, D.M. Zhu, and Z.B. Huang, Design and reflectivity analysis of high temperature wave-absorbing coatings with circular periodic structure, Mater. Lett., 151(2015), p. 109.
    [4]
    S.W. Eun, W.H. Choi, H.K. Jang, J.H. Shin, J.B. Kim, and C.G. Kim, Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures, Compos. Sci. Technol., 116(2015), p. 18.
    [5]
    H. Lv, G. Ji, X. Li, X. Chang, M. Wang, H. Zhang, and Y.W. Du, Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method, J. Magn. Magn. Mater., 374(2015), p. 225.
    [6]
    I. Choi, D. Lee, and D.G. Lee, Optimum design method of a nano-composite radar absorbing structure considering dielectric properties in the X-band frequency range, Compos. Struct., 119(2015), p. 218.
    [7]
    I. Choi, D. Lee, and D.G. Lee, Radar absorbing composite structures dispersed with nano-conductive particles, Compos. Struct., 122(2015), p. 23.
    [8]
    R. Panwar, S. Puthucheri, D. Singh, and V. Agarwala, Design of ferrite-graphene-based thin broadband radar wave absorber for stealth application, IEEE Trans Magn, 51(2015), No. 11, article No. 2802804.
    [9]
    H. Bakhshi, A. Shokuhfar, and N. Vahdati, Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1104.
    [10]
    L. Zhang, H.P. Shao, H. Zheng, T. Lin, and Z.M. Guo, Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1112.
    [11]
    L. Zhou, W. Zhou, M. Chen, F. Luo, and D. Zhu, Dielectric and microwave absorbing properties of low power plasma sprayed Al2O3/Nb composite coatings, Mater. Sci. Eng. B, 176(2011), No. 18, p. 1456.
    [12]
    K. Abhishek, A. Vijiaya, and S. Dharmendra, Microwave absorbing behavior of metal dispersed TiO2 nanocomposites, Adv. Powder Technol., 25(2014), No. 2, p. 483.
    [13]
    M.S. Cao, W. Zhou, G.M. Qu, and J.L. Rong, Dynamic response and fracture mechanism of a novel structural radar absorbing material, Chin. Phys. Lett., 25(2008), No. 8, p. 2954.
    [14]
    H.B. Xu, S.W. Bie, Y.S. Xu, W. Yuan, Q. Chen, and J.J. Jiang, Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces, Compos Part A, 80(2016), No. 19, p. 111.
    [15]
    A. Teber, I. Unver, H. Kavas, B. Aktas, and R. Bansal, Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials, J. Magn. Magn. Mater., 406(2016), No. 56, p. 228.
    [16]
    S. Simms and V. Fusco, Thin radar absorber using artificial magnetic ground plane, Electron. Lett., 41(2005), No. 24, p. 1311.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(514) PDF Downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return