P. C. Beuria, S. K. Biswal, B. K. Mishra, and G. G. Roy, Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp.229-239. https://dx.doi.org/10.1007/s12613-017-1400-y
Cite this article as: P. C. Beuria, S. K. Biswal, B. K. Mishra, and G. G. Roy, Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp.229-239. https://dx.doi.org/10.1007/s12613-017-1400-y

Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor

  • The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200℃) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity (Umf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100℃. The kinetics for low-LOI samples (<6wt%) indicates two different reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700℃), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450℃, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650℃, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650℃, nucleation and growth begins to influence the rate of removal of LOI.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return