Jin-long Li, Wan Wang, and Chun-gen Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp.289-296. https://dx.doi.org/10.1007/s12613-017-1407-4
Cite this article as: Jin-long Li, Wan Wang, and Chun-gen Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp.289-296. https://dx.doi.org/10.1007/s12613-017-1407-4
Research Article

Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy

Author Affilications
Funds: 

This work is financially supported by the National Natural Science Foundation of China (No. 51431003) and the Joint Funds of the National Natural Science Foundation of China (No. U1435201).

  • To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250℃ for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X=Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.
  • J.H. Perepezko, The hotter the engine, the better, Science, 326(2009), No. 5956, p. 1068.
    W.Y. Gong, L.J. Zhang, D.Z. Yao, and C.G. Zhou, Diffusivities and atomic mobilities in fcc Ni-Pt alloys, Scripta Mater., 61(2009), No. 1, p. 100.
    C.G. Zhou, C.L. Wang, and Y.X. Song, Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method, Mater. Sci. Eng. A, 490(2008), No.1-2, p. 351.
    K.M. Emran, S.T. Arab, A.M. Al-Turkustani, and H.A. Al-Turaif, Temperature effect on the corrosion and passivation characterization of Ni82.3Cr7Fe3Si4.5B3.2 alloy in acidic media, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 205.
    C.G. Zhou, J.S. Yu, S.K. Gong, and H.B. Xu, Influence of water vapor on the high temperature oxidation behavior of thermal barrier coatings, Mater. Sci. Eng. A, 348(2003), No. 1-2, p. 327.
    H.B. Guo, S.K. Gong, C.G. Zhou, and H.B. Xu, Investigation on hot-fatigue behaviors of gradient thermal barrier coatings by EB-PVD, Surf. Coat. Technol., 148(2001), No. 2-3, p. 110.
    U.P. Kumar and C.J. Kennady, Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni-W alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1060.
    H. Huang, C. Liu, L.Y. Ni, and C.G. Zhou, Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy, Corros. Sci., 53(2011), No. 4, p. 1369.
    D.Z. Yao, R. Cai, C.G. Zhou, J.B. Sha, and H.R. Jiang, Experimental study and modeling of high temperature oxidation of Nb-base in situ composites, Corros. Sci., 51(2009), No. 2, p. 364.
    Z. Yazdani, F. Karimzadeh, M.H. Abbasi, and A. Amini, Characterization of NbSi2-Al2O3 nanocomposite coatings prepared with plasma spraying mechanically alloyed powders, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 748.
    K. Zelenitsas and P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃, Mater. Sci. Eng. A, 416(2006), No. 1-2, p. 269.
    J. Wang, X.P. Guo, and J.M. Guo, Effects of B on the microstructure and oxidation resistance of Nb-Ti-Si-based ultrahigh-temperature alloy, Chin. J. Aeronaut, 22(2009), No. 5, p. 544.
    J. Geng and P. Tsakiropoulos, A study of the microstructures and oxidation of Nb-Si-Cr-Al-Mo in situ composites alloyed with Ti, Hf, Sn, Intermetallics, 15(2007), No. 3, p. 382.
    A. Rauf, Q. Yu, L. Jin, and C. Zhou, Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying, Scripta Mater., 66(2012), No. 2, p. 109.
    S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, Deposition of aluminide and silicide based protective coatings on niobium, Appl. Surf. Sci., 257(2010), No. 2, p. 635.
    T.P. Chow, K. Hamzeh, and A.J. Steckl, Thermal oxidation of niobium silicide thin films, J. Appl. Phys., 54(1983), No. 5, p. 2716.
    X.D. Tian and X.P. Guo, Structure of Al-modified silicide coatings on an Nb-based ultrahigh temperature alloy prepared by pack cementation techniques, Surf. Coat. Technol., 203(2009), No. 9, p. 1161.
    A.E. Kudryashov, A.Y. Potanin, D.N. Lebedev, I.V. Sukhorukova, D.V. Shtansky, and E.A. Levashov, Structure and properties of Cr-Al-Si-B coatings produced by pulsed electrospark deposition on a nickel alloy, Surf. Coat. Technol., 285(2016), p. 278.
    Y.Q. Qiao and X.P. Guo, Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process, Appl. Surf. Sci., 256(2010), No. 24, p. 7462.
    W. Wang, B.F. Yuan, and C.G. Zhou, Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites, Corros. Sci., 80(2014), p. 164.
    J. Pang, W. Wang, and C.G. Zhou, Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys, Corros. Sci., 105(2016), p. 1.
    Z.K. Zheng, W.M. Mao, Z.Y. Liu, D. Wang, and R. Yue, Refinement of primary Si grains in Al-20% Si alloy slurry through serpentine channel pouring process, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 572.
    W. Wang and C.G. Zhou, Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy, Corros. Sci., 110(2016), p. 114.
    A. Mueller, G. Wang, and R.A. Rapp, Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings, Mater. Sci. Eng. A, 155(1992), No. 1-2, p. 199.
    B.V. Cockeram and R.A. Rapp, Oxidation-resistant boronand germanium-doped silicide coatings for refractory metals at high temperature, Mater. Sci. Eng. A, 192-193(1995), p. 980.
    P. Zhang and X.P. Guo, Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process, Surf. Coat. Technol., 206(2011), No. 2-3, p. 446.
    W. Wang and C.G. Zhou, Hot corrosion behaviour of Nbss/Nb5Si3 in situ composites in the mixture of Na2SO4 and NaCl melts, Corros. Sci., 74(2013), p. 345.
    Z.P. Sun, X.P. Guo, and B.H. Guo, Effect of B and Ti on the directionally solidified microstructure of the Nb-Si alloys, Int. J. Refract. Met. Hard Mater., 51(2015), p. 243.
    J.C. Zhao, M.R. Jackson, and L.A. Peluso, Determination of the Nb-Cr-Si phase diagram using diffusion multiples, Acta Mater., 51(2003), No. 20, p. 6395.
    G. Shao, Thermodynamic modelling of the Cr-Nb-Si system, Intermetallics, 13(2005), No. 1, p. 69.
    X. Li, X.P. Guo, and Y.Q. Qiao, Structure and oxidation behavior of Zr-Y modified silicide coatings prepared on an Nb-Ti-Si-Cr based ultrahigh temperature alloy, Oxid. Met., 83(2015), No. 3, p. 253.
    F. Michihisa, M. Yuzi, H. Shigenari, N. Toshio, S. Kazusi, K. Akio and T. Ryouhei, Coatings of Nb-based alloy by Cr and/or Al pack cementations and its oxidation behavior in Air at 1273-1473 K, Mater. Trans., 44(2003), No. 4, p. 731.
    C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, Reactive growth of niobium silicides in bulk diffusion couples, Acta Mater., 51(2003), No. 16, p. 4837.
    S. Prasad and A. Paul, Growth mechanism of phases by interdiffusion and diffusion of species in the niobium-silicon system, Acta Mater., 59(2011), No. 4, p. 1577.
    M.A. Dayananda, An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion, Metall. Trans. A, 14(1983), No. 9, p. 1851.
    P.C. Tortorici and M.A. Dayananda, Interdiffusion and diffusion structure development in selected refractory metal silicides, Mater. Sci. Eng. A, 261(1999), No. 1-2, p. 64.
    C.L. Yeh, H.J. Wang, and W.H. Chen, A comparative study on combustion synthesis of Ti-Si compounds, J. Alloys Compd., 450(2008), No. 1-2, p. 200.
  • Cited by

    Periodical cited type(13)

    1. Wanting Yang, Zhuoyue Lan, Xiong Li, et al. Mechanism and countermeasures of influence of moraine impact on copper-molybdenum ore flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 713: 136496. DOI:10.1016/j.colsurfa.2025.136496
    2. Rui Liu, Lijun Deng, Jianing Chu, et al. Flotation separation mechanisms of fluorapatite and muscovite by fatty acid and polyoxymethylene ether phosphate in hard water. Separation and Purification Technology, 2025, 360: 131126. DOI:10.1016/j.seppur.2024.131126
    3. Xiangyun Sun, Qifa Lu, Jiakun Tan, et al. The impact of metal ions on flotation of coal gasification fine slag: an experimental study. International Journal of Coal Preparation and Utilization, 2025, 45(1): 213. DOI:10.1080/19392699.2024.2331543
    4. Gustavo Victor Batista e Silva, Guilherme José Ramos Oliveira, Daniela Gomes Horta. Effect of Ultrasonic Pre-Treatment on the Reverse Flotation of Kaolinite From Bauxite. Mineral Processing and Extractive Metallurgy Review, 2024, 45(8): 982. DOI:10.1080/08827508.2024.2351061
    5. Guangxi Ma, Hao Huang, Jingwen Liu, et al. Effects of carrier particles on flotation removal of unburned carbon particles from fly ash. Powder Technology, 2024, 434: 119247. DOI:10.1016/j.powtec.2023.119247
    6. Andres Ramirez-Madrid, Kevin Irribarra, Leopoldo Gutierrez, et al. Effect of sodium silicate modified with Fe2+ and Al3+ as dispersant on flotation of molybdenite and chalcopyrite in presence of kaolinite and seawater. Minerals Engineering, 2024, 207: 108551. DOI:10.1016/j.mineng.2023.108551
    7. Felipe M. Galleguillos Madrid, María Arancibia-Bravo, Jonathan Cisterna, et al. Corrosion of Titanium Electrode Used for Solar Saline Electroflotation. Materials, 2023, 16(9): 3514. DOI:10.3390/ma16093514
    8. Yingqiang Ma, Mianyan Yang, Langfeng Tang, et al. Flotation separation mechanism for secondary copper sulfide minerals and pyrite using novel collector ethyl isobutyl xanthogenic acetate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634: 128010. DOI:10.1016/j.colsurfa.2021.128010
    9. Zhanglei Zhu, Zhen Li, Wanzhong Yin, et al. Effect of surface roughness on the flotation separation of hematite from fine quartz. Journal of Industrial and Engineering Chemistry, 2022, 109: 431. DOI:10.1016/j.jiec.2022.02.029
    10. Xiangwei Zhang, Yangyu Liu, Chunquan Li, et al. Fast and lasting electron transfer between γ-FeOOH and g-C3N4/kaolinite containing N vacancies for enhanced visible-light-assisted peroxymonosulfate activation. Chemical Engineering Journal, 2022, 429: 132374. DOI:10.1016/j.cej.2021.132374
    11. Pengfei Hu, Qiang Li, Long Liang. A review of characterization techniques of heterocoagulation between mineral particles in mineral separation process. Separation and Purification Technology, 2021, 279: 119699. DOI:10.1016/j.seppur.2021.119699
    12. Wenxuan Huang, Wenbiao Liu, Wenlin Zhong, et al. Effects of common ions on the flotation of fluorapatite and dolomite with oleate collector. Minerals Engineering, 2021, 174: 107213. DOI:10.1016/j.mineng.2021.107213
    13. J.R. Corpas-Martínez, M. Calero, A. Pérez, et al. Influence of physical and chemical parameters on ultrafine fluorspar froth flotation. Powder Technology, 2020, 373: 26. DOI:10.1016/j.powtec.2020.06.041

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (590) PDF downloads (12) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return