Cite this article as: | Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, and Rui Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., 24(2017), No. 3, pp.342-351. https://dx.doi.org/10.1007/s12613-017-1413-6 |
P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, and C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nat. Mater., 7(2008), No. 9, p. 741.
|
J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359.
|
Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D. Choi, J.P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111(2011), No. 5, p. 3577.
|
L.Y. Yu, W.H. Qiu, J.Y. Huang, and F. Lian, Synthesis and electrochemical characteristics of xLi2MnO3·(1-x)Li-(Ni1/3Co1/3Mn1/3)O2 compounds, Int. J. Miner. Metall. Mater, 16(2009), No. 4, p. 458.
|
S.H. Yun, K.S. Park, and Y.J. Park, The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material, J. Power Sources, 195(2010), No. 18, p. 6108.
|
J. Choi and A. Manthiram, Crystal chemistry and electrochemical characterization of layered LiNi0.5-yCo0.5-yMn2yO2 and LiCo0.5-yMn0.5-yNi2yO2(0 ≤ 2y ≤ 1) cathodes, J. Power Sources, 162(2006), No. 1, p. 667.
|
M.H. Kim, H.S. Shin, D. Shin, and Y.K. Sun, Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation, J. Power Sources, 159(2006), No. 2, p. 1328.
|
T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642.
|
W.B. Luo, X.H. Li, and J.R. Dahn, Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3-z(MnMg)z/2]O2, Chem. Mater., 22(2010), No. 17, p. 5065.
|
R. Santhanam and B. Rambabu, High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries, J. Power Sources, 195(2010), No. 13, p. 4313.
|
Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, and S.X. Dou, Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries, J. Power Sources, 119-121(2003), p. 184.
|
J.G. Li, L. Wang, Q. Zhang, and X.M. He, Synthesis and characterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ion batteries, J. Power Sources, 189(2009), No. 1, p. 28.
|
P.Y. Liao, J.G. Duh, and S.R. Sheen, Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials, J. Power Sources, 143(2005), No. 1-2, p. 212.
|
Y. Zhang, H. Cao, J. Zhang, and B.J. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization, Solid State Ionics, 177(2006), No. 37, p. 3303.
|
S.K. Zhong, L. Wei, Z.G. Zuo, X. Tang, and Y.H. Li, Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials, Trans. Nonferrous Met. Soc. China, 19(2009), No. 6, p. 1499.
|
C.L. Gan, X.H. Hu, H. Zhan, and Y.H. Zhou, Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as a cathode material for secondary lithium batteries, Solid State Ionics, 176(2005), No. 7-8, p. 687.
|
J.J. Saavedra-Arias, N.K. Karan, D.K. Pradhan, A. Kumar, S. Nieto, R. Thomas, and R.S. Katiyar, Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material:ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge-discharge process, J. Power Sources, 183(2008), No. 2, p. 761.
|
P. Yue, Z.X. Wang, H.J. Guo, F.X. Wu, Z.J. He, and X.H. Li, Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries, J. Solid State Electr., 16(2012), No. 12, p. 3849.
|
P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, W. Chen, H.J. Guo, and X.H. Li, Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol., 214(2011), No. 3, p. 279.
|
P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, H.J. Guo, X.H. Li, Q.Y. Hu, and Y.H. Zhang, Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries, Scripta Mater., 65(2011), No. 12, p. 1077.
|
G.T.K. Fey, J.G. Chen, Z.F. Wang, H.Z. Yang, and T.P. Kumar, Saturated linear dicarboxylic acids as chelating agents for the sol-gel synthesis of LiNi0.8Co0.2O2, Mater. Chem. Phys., 87(2004), No. 2-3, p. 246.
|
G.T.K. Fey, V. Subramanian, and C.Z. Lu, Tartaric acid-assisted sol-gel synthesis of LiNi0.8Co0.2O2 and its electrochemical properties as a cathode material for lithium batteries, Solid State Ionics, 152(2002), p. 83.
|
H.Q. Lu, H.T. Zhou, A.M. Svensson, A. Fossdal, E. Sheridan, S.G. Lu, and F. Vullum-Bruer, High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries, Solid State Ionics, 249(2013), p. 105.
|
H. Cao, Y. Zhang, J. Zhang, and B.J. Xia, Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries, Solid State Ionics, 176(2005), No. 13-14, p. 1207.
|
L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, J.G. Duan, J.B. Jiang, and G.R. Hu, Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries, Electrochim. Acta, 130(2014), p. 82.
|
D.P. Abraham, R.D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4(2002), No. 8, p. 620.
|
Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials:nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145.
|
M.M. Thackeray, C.S. Johnson, J.T. Vaughey, N. Li, and S.A. Hackney, Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries, J. Mater. Chem., 15(2005), No. 23, p. 2257.
|
D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 89(2000), No. 2, p. 206.
|
M.H. Lee, Y.J. Kang, S.T. Myung, and Y.K. Sun, Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation, Electrochim. Acta, 50(2004), No. 4, p. 939.
|
J.R. Ying, C.R. Wan, C.Y. Jiang, and Y.X. Li, Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries, J. Power Sources, 99(2001), No. 1-2, p. 78.
|
J.Z. Kong, H.F. Zhai, C. Ren, G.A. Tai, X.Y. Yang, F. Zhou, H. Li, J.X. Li, and Z. Tang, High-capacityLi(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent, J. Solid State Electrochem., 18(2013), No. 1, p. 181.
|
D. Mohanty and H. Gabrisch, Microstructural investigation of LixNi1/3Mn1/3Co1/3O2(x ≤ 1) and its aged products via magnetic and diffraction study, J. Power Sources, 220(2012), p. 405.
|
W.H. Ryu, S.J. Lim, W.K. Kim, and H.S. Kwon, 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries, J. Power Sources, 257(2014), p. 186.
|
D. Li, F. Lian, X.M. Hou, and K.C. Chou, Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction, Int. J. Miner. Metall. Mater., 19(2012), No. 9, p. 856.
|
K.M. Shaju, G.V.S. Rao, and B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta, 48(2002), No. 2, p. 145.
|
L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, and G.R. Hu, Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries, Chin. Chem. Lett., 25(2014), No. 6, p. 883.
|
J.N. Reimers, E. Rossen, C.D. Jones, and J.R. Dahn, Structure and electrochemistry of LixFeyNi1-yO2, Solid State Ionics, 61(1993), No. 4, p. 335.
|
J. Eom, M.G. Kim, and J. Cho, Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2(x=0, 0.03, and 0.06) cathode materials for lithium batteries, J. Electrochem. Soc., 155(2008), No. 3, p. 239.
|
S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4(2014), No. 1.
|
F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta, H.L. Xin and M.M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Commun., 5(2014).
|
F. Lin, D. Nordlund, Y.Y. Li, M.K. Quan, L. Cheng, T.C. Weng, Y.J. Liu, H.L. Xin, and M.M. Doeff, Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries, Nat. Energy, 1(2016), art. No. 15004.
|
Y.S. Lee, D. Ahn, Y.H. Cho, T.E. Hong, and J. Cho, Improved rate capability and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode materials via nanoscale SiP2O7 coating, J. Electrochem. Soc., 158(2011), No. 12, p. 1354.
|
P. Yue, Z.X. Wang, X.H. Li, X. Xiong, J.X. Wang, X.W. Wu, and H.J. Guo, The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution, Electrochim. Acta, 95(2013), p. 112.
|
[1] | Yan-ping Zeng, Jin-dou Jia, Wen-he Cai, Shu-qing Dong, Zhi-chun Wang. Effect of long-term service on the precipitates in P92 steel [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(8): 913-921. DOI: 10.1007/s12613-018-1640-5 |
[2] | Xin Lu, Takahiro Miki, Tetsuya Nagasaka. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1): 25-36. DOI: 10.1007/s12613-017-1375-8 |
[3] | Metin Kök. Tool life modeling for evaluating the effects of cutting speed and reinforcements on the machining of particle reinforced metal matrix composites [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 353-362. DOI: 10.1007/s12613-010-0318-4 |
[4] | Shaohua Luo, Zilong Tang, Junbiao Lu, Linfeng Hu, Zhongtai Zhang. Synthesis and performance of carbon-modified LiFePO4 using an in situ PVA pyrolysis procedure [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(6): 562-567. DOI: 10.1016/S1005-8850(07)60129-7 |
[5] | Chengming Li, Qi He, Gang Lin, Xiaojun Sun, Weizhong Tang, Fanxiu Lu. TiN/CrN multilayered hard coatings with TiCrN interlayer deposited by a filtered cathodic vacuum arc technique [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(5): 420-424. |
[6] | Maoqiu Wang, Han Dong, Qi Wang. Elevated-temperature properties of one long-life high-strength gun steel [J]. International Journal of Minerals, Metallurgy and Materials, 2004, 11(1): 62-66. |
[7] | Yang Hu, Yang Yang, Weidong Hao. Research of MPLS traffic engineering over differentiated services [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(6): 474-477. |
[8] | Jianguo Wang, Hongying Wang, Shiping Xu, Lianqing Wang, Yonglin Kang. A new model for life prediction of GH4133 under TMF conditions [J]. International Journal of Minerals, Metallurgy and Materials, 2002, 9(4): 287-291. |
[9] | Jiyue Sun, Guoliang Chen. A Creep Equation Based on Thermal Activation [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(1): 44-46. |
[10] | CHEN Guoliang, GUO Hong, SUN Jiyue, SHU Guogang, LI Yiming. Extrapolation Model of High Temperature Creep for 12Cr1MoV Steel [J]. International Journal of Minerals, Metallurgy and Materials, 1997, 4(2): 37-37. |
1. | Qi Sun, Yibo Liu, Qinghua Zhang, et al. A new method for refinement of Ti-6Al-4 V prior-β grain structure in the alternating magnetic field assisted narrow gap gas tungsten arc welding (AMF-GTAW) via filler wire oscillation. Journal of Materials Processing Technology, 2024, 327: 118376. DOI:10.1016/j.jmatprotec.2024.118376 |
2. | Rajeev Ranjan, Sanjay Kumar Jha. Optimization of welding parameters and microstructure analysis of low frequency vibration assisted SMAW butt welded joints. International Journal on Interactive Design and Manufacturing (IJIDeM), 2024, 18(3): 1687. DOI:10.1007/s12008-023-01562-8 |
3. | Zongli Yi, Jiguo Shan, Yue Zhao, et al. Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys. International Journal of Minerals, Metallurgy and Materials, 2024, 31(5): 1072. DOI:10.1007/s12613-024-2869-9 |
4. | Bishub Choudhury, Vivek Singh, Ajay Pratap Singh, et al. Simultaneous optimization of weld bead geometry and weld strength during gas tungsten arc welding of Inconel 825 strips using desirability function coupled with grey relational analysis (DF-GRA). Engineering Research Express, 2023, 5(1): 015035. DOI:10.1088/2631-8695/acbbba |
5. | M.N. Ilman, A. Widodo, N.A. Triwibowo. Metallurgical, mechanical and corrosion characteristics of vibration assisted gas metal arc AA6061-T6 welded joints. Journal of Advanced Joining Processes, 2022, 6: 100129. DOI:10.1016/j.jajp.2022.100129 |
6. | Xiangbo Liu, Fengye Tang, Wenyong Zhao, et al. Multi-phase field lattice Boltzmann model of columnar-to-equiaxed transition in entire welding molten pool. Computational Materials Science, 2022, 204: 111182. DOI:10.1016/j.commatsci.2021.111182 |
7. | Pengfei Zheng, Qinghua Lu, Peilei Zhang, et al. Effect of Vibration on Microstructure and Fatigue Properties of 6082 CMT-Welded Joints. Transactions of the Indian Institute of Metals, 2021, 74(12): 3217. DOI:10.1007/s12666-021-02383-7 |
8. | A.A. Khalili Tabas, B. Beidokhti, A.R. Kiani-Rashid. Comprehensive study on hydrogen induced cracking of electrical resistance welded API X52 pipeline steel. International Journal of Hydrogen Energy, 2021, 46(1): 1012. DOI:10.1016/j.ijhydene.2020.09.219 |
9. | Guancheng Zhao, Zhijiang Wang, Shengsun Hu, et al. Effect of ultrasonic vibration of molten pool on microstructure and mechanical properties of Ti-6Al-4V joints prepared via CMT + P welding. Journal of Manufacturing Processes, 2020, 52: 193. DOI:10.1016/j.jmapro.2020.01.045 |
10. | Fen Shi, Zhen-tai Zheng, Meng He, et al. Microstructure evolution and grain refinement mechanism of Inconel 601H alloy welded joints under compound physical fields of vibration and rapid cooling. Materials Research Express, 2020, 7(2): 026506. DOI:10.1088/2053-1591/ab6e38 |
11. | Xingran Li, Di Bai, Yuqi Wang, et al. High-nitrogen steel laser-arc hybrid welding in vibration condition. Materials Science and Technology, 2020, 36(4): 434. DOI:10.1080/02670836.2019.1706907 |
12. | Yongzhen Bai, Qinghua Lu, Xinhuai Ren, et al. Study of Inconel 718 Welded by Bead-On-Plate Laser Welding under High-Frequency Micro-Vibration Condition. Metals, 2019, 9(12): 1335. DOI:10.3390/met9121335 |
13. | Kai Chen, Shu-yuan Rui, Fa Wang, et al. Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(7): 889. DOI:10.1007/s12613-019-1802-0 |
14. | Chao Chen, Chenglei Fan, Xiaoyu Cai, et al. Investigation of formation and microstructure of Ti-6Al-4V weld bead during pulse ultrasound assisted TIG welding. Journal of Manufacturing Processes, 2019, 46: 241. DOI:10.1016/j.jmapro.2019.09.014 |