Ying-bo Dong, Hao Li, Hai Lin, and Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp.369-376. https://dx.doi.org/10.1007/s12613-017-1416-3
Cite this article as: Ying-bo Dong, Hao Li, Hai Lin, and Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp.369-376. https://dx.doi.org/10.1007/s12613-017-1416-3

Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

  • The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30℃, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3)α-(1-α)2/3=k1t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return