Cite this article as: | Bo-lin He, Lei Xiong, Ming-ming Jiang, Ying-xia Yu, and Li Li, Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment, Int. J. Miner. Metall. Mater., 24(2017), No. 4, pp.410-414. https://dx.doi.org/10.1007/s12613-017-1421-6 |
D. Peng, J. Shen, Q. Tang, C. P. Wu, and Y. B. Zhou, Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 259.
|
Y. J. Chu, J. Chen, X. Q. Li, S. Q. Wu, and Z. H. Yang, Effects of thermomechanical treatments on the microstructures and mechanical properties of GTA-welded AZ31B magnesium alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 945.
|
L. X. Huo, The Fracture Behavior of Welded Structure and Evaluation, China Machine Press, Beijing, 2000.
|
X. D. Tian, Welding Structure, China Machine Press, Beijing, 1981.
|
B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimovb, Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel, Mater. Sci. Eng. A, 458(2007), No. 1-2, p. 253.
|
D. Q. Yin, D. P. Wang, H. Y. Jing, and L. X. Huo, The effects of ultrasonic peening treatment on the ultra-long life fatigue behavior of welded joints, Mater. Des., 31(2010), No. 7, p. 3299.
|
B. N. Mordyuk and G. I. Prokopenko, Ultrasonic impact peening for the surface properties'management, J. Sound Vib., 308(2007), No. 3-5, p. 855.
|
M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Nitridation of Ti-6Al-4V alloy under ultrasonic impact treatment in liquid nitrogen, Acta Mater., 60(2012), No. 17, p. 6223.
|
B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Structurally induced enhancement in corrosion resistance of Zr-2.5% Nb alloy in saline solution by applying ultrasonic impact peening, Mater. Sci. Eng. A, 559(2013), p. 453.
|
D. P. Wang, B. M. Gong, S. P. Wu, H. Zhang, and Y. Y. Feng, Research review on fatigue life improvement of welding joint and structure, J. East Chin. Jiaotong. Univ., 33(2016), No. 6, p. 1.
|
B. L. He, Y. X. Yu, J. P. Shi, and H. H. Yu, The effect of ultrasonic impact on the fatigue properties of 16MnR steel welded joints for bogie, China Railw. Sci., 32(2011), No. 5, p. 97.
|
K. Lu and J. Lu, Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach, J. Mater. Sci. Technol., 15(1999), No. 3, p. 193.
|
C. H. Zhang, F. Yu, G. Xie, Y. M. Wang, and X. M. He, Microstructure and residual stress of surface nanocrystallized commercial pure zirconium, Rare Met. Mater. Eng., 43(2014), No. 9, p. 2147.
|
F. Tian and H. Yang, Experimental study on wear behavior of nano-crystallization surface of 40Cr, Surf. Technol., 42(2013), No. 5, p. 53.
|
D. Li, Z. Fan, L. B. Liao, X. Hong, and L. Zhang, Fabrication and characterization of nanocrystructured surface layer of J507 weld by ultrasonic impact peening, Trans. Chin. Weld. Inst., 30(2009), No. 1, p. 3.
|
K. Zhao, M. Wang, C. X. Lin, and C. Tuo, Mechanism and nanostructure evolution of surface self-nanocrystallization of TC17, Rare Met. Mater. Eng., 42(2013), No. 10, p. 2048.
|
T. Wang, D. P. Wang, G. Liu, B. M. Gong, and N. X. Song, Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing, Appl. Surf. Sci., 255(2008), No. 5, p. 1827.
|
J. Han, G. M. Sheng, G. X. Hu, X. L. Zhou, and J. Yan, Microstructure and properities of surface nanostructured layer of 0Cr18Ni9Ti stainless steel, Mater. Mech. Eng., 32(2008), No. 11, p. 66.
|
A. Amanov, Y. S. Pyun, J. H. Kim, C. M. Suh, I. S. Cho, H. D. Kim, Q. Wang, and M. K. Khan, Ultrasonic fatigue performance of high temperature structural material Inconel 718 alloys at high temperature after UNSM treatment, Fatigue Fract. Eng. Mater. Struct., 38(2015), No. 11, p. 1266.
|
Y. Zhu, B. W. Fan, W. Guo, and H. Kang, Influence of laser shock peening times on microstructure and hardness of TA15 titanium alloy, J. Beijing Univ. Aeronaut. Astronaut., 40(2014), No. 4, p. 444.
|
1. | Wenjie Liu, Hui Li, Qianxing Yin, et al. Promoting densification and strengthening effect of ultrasonic impact treatment on Haynes 230 alloy manufactured by laser powder bed fusion. Journal of Materials Science & Technology, 2025, 216: 226. DOI:10.1016/j.jmst.2024.07.036 |
2. | Bangping Gu, Jiahao Chu, Heng Zhang, et al. Effects of ultrasonic impact on surface characterization of S355 steel welded joint. Materials Today Communications, 2024, 40: 109878. DOI:10.1016/j.mtcomm.2024.109878 |
3. | Bangping Gu, Yuchen Yang, Yansong Wang, et al. Study on the effects and mechanisms of ultrasonic impact treatment on impact toughness of Q345 steel welded joints. Engineering Fracture Mechanics, 2024. DOI:10.1016/j.engfracmech.2024.110754 |
4. | Bangping Gu, Chengjian Yin, Guanhua Xu, et al. Enhanced impact toughness of 316L stainless steel welded joint by ultrasonic impact. Materials Today Communications, 2024, 39: 109277. DOI:10.1016/j.mtcomm.2024.109277 |
5. | Bangping Gu, Jingshu Zhuo, Guanhua Xu, et al. Strength prediction mathematical model of welded joint after UIT based on digital image correlation method. Materials Today Communications, 2024, 38: 108272. DOI:10.1016/j.mtcomm.2024.108272 |
6. | Yufei Chen, Xiancheng Zhang, Donghong Ding, et al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review. Journal of Materials Science & Technology, 2023, 165: 94. DOI:10.1016/j.jmst.2023.03.064 |
7. | Vitalii V. Knysh, Bohdan N. Mordyuk, Sergii O. Solovei, et al. Combining electric discharge surface alloying and high-frequency mechanic impact post-processing for increased corrosion fatigue life of as-welded transverse non-load-carrying attachments of the S355 steel. International Journal of Fatigue, 2023, 177: 107926. DOI:10.1016/j.ijfatigue.2023.107926 |
8. | Chuan Liu, Lihui Tian, Jianfei Wang, et al. A comparative study of ultrasonic impact cladding of steel surface using titanium alloy pin. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(17): 9788. DOI:10.1177/09544062221096239 |
9. | Cheng Wang, Xingyuan Hu, Yang Cheng, et al. Experimental investigation and numerical study on ultrasonic impact treatment of pure copper. Surface and Coatings Technology, 2021, 428: 127889. DOI:10.1016/j.surfcoat.2021.127889 |
10. | Diqing Wan, Jiajun Hu, Yinglin Hu, et al. Study on Improving Damping Capacity of Pure Magnesium by Ultrasonic Impact Treatment. Journal of Materials Engineering and Performance, 2020, 29(12): 8006. DOI:10.1007/s11665-020-05249-z |
11. | Li Li, Suyan Zhao, Nannan Zhang, et al. Enhanced Wear Resistance of Iron-Based Alloy Coating Induced by Ultrasonic Impact. Coatings, 2019, 9(12): 804. DOI:10.3390/coatings9120804 |