Cite this article as: |
Saman Beikzadeh Noei, Saeed Sheibani, Fereshteh Rashchi, and Seyed Mohammad Javad Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 611-620. https://doi.org/10.1007/s12613-017-1443-0 |
Saeed Sheibani E-mail: ssheibani@ut.ac.ir
[1] |
C. Demergasso, F. Galleguillos, P. Soto, M. Serón, and V. Iturriaga, Microbial succession during a heap bioleaching cycle of low grade copper sulfides:does this knowledge mean a real input for industrial process design and control?Hydrometallurgy, 104(2010), No. 3-4, p. 382.
|
[2] |
J. Willner and A. Fornalczyk, Extraction of metals from electronic waste by bacterial leaching, Environ. Prot. Eng., 39(2013), No. 1, p. 197.
|
[3] |
H.B. Zhao, J. Wang, X.W. Gan, W.Q. Qin, M.H. Hu, and G.Z Qiu, Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria:an emphasis on their interactions, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 777.
|
[4] |
A. Rubio and F.J. García Frutos, Bioleaching capacity of an extremely thermophilic culture for chalcopyrite materials, Miner. Eng., 15(2002), No. 9, p. 689.
|
[5] |
J.A. Muñoz, D.B. Dreisinger, W.C. Cooper, and S.K. Young, Silver-catalyzed bioleaching of low-grade copper ores:Part I. Shake flasks tests, Hydrometallurgy, 88(2007), No. 1-4, p. 3.
|
[6] |
D.E. Rawlings, Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates, Microb. Cell Factories, 4(2005), p. 13.
|
[7] |
E.R. Donati and W. Sand, Microbial Processing of Metal Sulfides, Springer Verlag, Dordrecht, 2007.
|
[8] |
Z. Manafi, H. Abdollahi, and O.H. Tuovinen, Shake flask and column bioleaching of a pyritic porphyry copper sulfide ore, Int. J. Miner. Process., 119(2013), p. 16.
|
[9] |
G. Curutchet, P.H. Tedesco, and E.R. Donati, Combined degradation of covellite by Thiobacillus thiooxidans and Thiobacillus ferrooxidans, Biotechnol. Lett., 18(1996), No. 12, p. 1471.
|
[10] |
Y. Jia, H. Sun, D. Chen, H. Gao, and R. Ruan, Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar, Hydrometallurgy, 164(2016), p. 355.
|
[11] |
L. Jaeheon, A. Sevket, D.L. Doerr, and J.A. Brierley, Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms, Hydrometallurgy, 105(2011), p. 213.
|
[12] |
L. Xia, C. Yin, S.L. Dai, G.Z. Qiu, X.H. Chen, and J.S. Liu, Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor, J. Ind. Microbiol. Biotechnol., 37(2010), No. 3, p. 289.
|
[13] |
C. Gómez, M.L. Blázquez, and A. Ballester, Bioleaching of a Spanish complex sulphide ore bulk concentrate, Miner. Eng., 12(1999), No. 1, p. 93.
|
[14] |
H.M. Lizama, J.R. Harlamovs, D.J. McKay, and Z. Dai, Heap leaching kinetics are proportional to the irrigation rate divided by heap height, Miner. Eng., 18(2005), No. 6, p. 623.
|
[15] |
T. Kai, Y. Suenaga, A. Migita, and T. Takahashi, Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria, Chem. Eng. Sci., 55(2000), No. 17, p. 3429.
|
[16] |
G. da Silva, Relative importance of diffusion and reaction control during the bacterial and ferric sulfate leaching of zinc sulfide, Hydrometallurgy, 73(2004), No. 3-4, p. 313.
|
[17] |
X.Y. Liu, B. Wu, B.W. Chen, J.K. Wen, R.M. Ruan, G.C. Yao, and D.Z. Wang, Bioleaching of chalcocite started at different pH:Response of the microbial community to environmental stress and leaching kinetics, Hydrometallurgy, 103(2010), No. 1-4, p. 1.
|
[18] |
T.A. Fowler, P.R. Holmes, and F.K. Crundwell, On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans, Hydrometallurgy, 59(2001), No. 2-3, p. 257.
|
[19] |
Z.M. Jin, G.W. Warren, and H. Henein, Reaction kinetics of the ferric chloride leaching of sphalerite:an experimental study, Metall. Trans. B, 15(1984), No. 1, p. 5.
|
[20] |
Y.K. Yang, S. Chen, S.C. Li, M.J. Chen, H.Y. Chen, and B.J. Liu, Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect, J. Biotechnol., 173(2014), p. 24.
|
[21] |
F. Bakhtiari, H. Atashi, M. Zivdar, S. Seyedbagheri, and M.H. Fazaelipoor, Bioleaching kinetics of copper from copper smelters dust, J. Ind. Eng. Chem., 17(2011), No. 1, p. 29.
|
[22] |
D.F. Haghshenas, E.K. Alamdari, B. Bonakdarpour, D. Darvishi, and B. Nasernejad, Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans, Hydrometallurgy, No. 3-4, 99(2009), p. 202.
|
[23] |
O. Levenspiel, Chemical Reaction Engineering, 2nd Ed., John Wiley and Sons, New York, 1999.
|
[24] |
M.K. Nazemi, F. Rashchi, and N. Mostoufi, A new approach for identifying the rate controlling step applied to the leaching of nickel from spent catalyst, Int. J. Miner. Process., 100(2011), No. 1-2, p. 21.
|
[25] |
F. Habashi, A generalized kinetic model for hydrometallurgical processes, Chem. Prod. Process Model., 2(2007), No. 1, p. 1934.
|
[26] |
D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect, J. Hazard. Mater., 152(2008), No. 3, p. 1082.
|
[27] |
Y. Xiang, P.X. Wu, N.W. Zhu, T. Zhang, W. Liu, J.H. Wu, and P. Li, Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage, J. Hazard. Mater., 184(2010), No. 1-3, p. 812.
|
[28] |
P.H.M. Kinnunen and J.A. Puhakka, High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor, Biotechnol. Bioeng., 85(2004), No. 7, p. 697.
|
[29] |
N.S. Choi, K.S. Cho, D.S. Kim, and D.J. Kim, Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Health Part A, 39(2004), No. 11-12, p. 2973.
|
[30] |
Karsagani, F. Rashchi, N. Mostoufi, and E. Vahidi, Leaching of vanadium from LD converter slag using sulfuric acid, Hydrometallurgy, 102(2010), No. 1-4, p. 14.
|
[31] |
Y.G. Wang, L.J. Su, W.M. Zeng, G.Z. Qiu, L.L. Wan, X.H. Chen, and H.B. Zhou, Optimization of copper extraction for bioleaching of complex Cu-polymetallic concentrate by moderate thermophiles, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1161.
|
[32] |
M.I. Muravyov, N.V. Fomchenko, and T.F. Kondrat'eva, Biohydrometallurgical technology of copper recovery from a complex copper concentrate, Appl. Biochem. Microbiol., 47(2011), p. 607.
|
[33] |
N.P. Marhual, N. Pradhan, R.N. Kar, L.B. Sukla, and B.K. Mishra, Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample, Bioresour. Technol., 99(2008), No. 17, p. 8331.
|
[34] |
F.K. Crundwell, Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions, Hydrometallurgy, 19(1987), No. 2, p. 227.
|