Cite this article as: |
Wei-ping Liu and Xia-fei Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electrogenesis, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp. 621-626. https://doi.org/10.1007/s12613-017-1444-z |
Wei-ping Liu E-mail: weiping@jsut.edu.cn
[1] |
A.M. Rashad, A brief review on blast-furnace slag and copper slag as fine aggregate in mortar and concrete based on Portland cement, Rev. Adv. Mater. Sci., 44(2016), No. 3, p. 221.
|
[2] |
S. Mantry, D. Behera, A. Satapathy, B.B. Jha, and B.K. Mishra, Deposition of plasma sprayed copper slag coatings on metal substrates, Surf. Eng., 29(2013), No. 3, p. 222.
|
[3] |
S.K. Bharati and S.H. Chew, Geotechnical behavior of recycled copper slag-cement-treated Singapore marine clay, Geotech. Geol. Eng., 34(2016), No. 3, p. 835.
|
[4] |
M.M. Ali, S.K. Agarwal, and A. Pahuja, Potentials of copper slag utilisation in the manufacture of ordinary Portland cement, Adv. Cem. Res., 25(2013), No. 4, p. 208.
|
[5] |
C.Q. Lye, S.K. Koh, R. Mangabhai, and R.K. Dhir, Use of copper slag and washed copper slag as sand in concrete:A state-of-the-art review, Mag. Concr. Res., 67(2015), No. 12, p. 665.
|
[6] |
R.S. Edwin, M. De Schepper, E. Gruyaerta, and N. De Belie, Effect of secondary copper slag as cementitious material in ultra-high performance mortar, Constr. Build. Mater., 119(2016), No. 1, p. 31.
|
[7] |
A.S. Nazer, O. Pavez, and F. Rojas, Use of copper slag in cement mortar, Rem Rev. Esc. Minas, 65(2012), No. 1, p. 87.
|
[8] |
K.S. Al-Jabri, A.H. Al-Saidy, and R. Taha, Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete, Constr. Build. Mater., 25(2011), No. 2, p. 933.
|
[9] |
B.M. Mithun and M.C. Narasimhan, Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate, J. Cleaner Prod., 112(2016), No. 1, p. 837.
|
[10] |
M. Najimi, J. Sobhani, and A.R. Pourkhorshidi, Durability of copper slag contained concrete exposed to sulfate attack, Constr. Build. Mater., 25(2011), No. 4, p. 1895.
|
[11] |
C.K. Madheswaran, P.S. Ambily, J.K. Dattatreya, and N.P. Rajamane, Studies on use of copper slag as replacement material for river sand in building constructions, J. Inst. Eng. India Ser. A, 95(2014), No. 3, p. 169.
|
[12] |
M. Fadaee, R. Mirhosseini, R. Tabatabei, and M.J. Fadaee, Investigation on using copper slag as part of cementitious materials in self compacting concrete, Asian J. Civ. Eng., 16(2014), No. 3, p. 368.
|
[13] |
D. Brindha, T. Baskaran, and S. Nagan, Assessment of corrosion and durability characteristics of copper slag admixed concrete, Int. J. Civ. Struct. Eng., 1(2010), No. 2, p. 192.
|
[14] |
T. Huanosta-Gutierrez, R.F. Dantas, R.M. Ramirez-Zamora, and S. Esplugas, Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water, J. Hazard. Mater., 213-214(2012), No. 2, p. 325.
|
[15] |
B.S. Kim, S.K. Jo, D. Shin, J.C. Lee, and S.B. Jeong, A physico-chemical separation process for upgrading iron from waste copper slag, Int. J. Miner. Process., 124(2013), No. 3, p. 124.
|
[16] |
Z.C. Wang and H. Becker, Ratios of S, Se and Te in the silicate earth require a volatile-rich late veneer, Nature, 499(2013), No. 7458, p. 328.
|
[17] |
A.F. Olteanu, T. Dobre, E. Panturu, A.D. Radu, and A. Akcil, Experimental process analysis and mathematical modeling for selective gold leaching from slag through wet chlorination, Hydrometallurgy, 144-145(2014), No. 4, p. 170.
|
[18] |
E. Rudnik, L. Burzyńska, and W. Gumowska, Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag, Miner. Eng., 22(2009), No. 1, p. 88.
|
[19] |
R.K. Nadirov, L.I. Syzdykova, A.K. Zhussupova, and M.T. Usserbaev, Recovery of value metals from copper smelter slag by ammonium chloride treatment, Int. J. Miner. Process., 124(2013), No. 22, p. 145.
|
[20] |
F. Carranza, N. Iglesias, A. Mazuelos, R. Romero, and O. Forcat, Ferric leaching of copper slag flotation tailings, Miner. Eng., 22(2009), No. 1, p. 107.
|
[21] |
B.E. Logan, S.A. Cheng, V.J. Watson, and G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol., 41(2007), No. 9, p. 3341.
|
[22] |
G. Reguera, K.D. Mcarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, and D.R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435(2005), No. 7045, p. 1098.
|
[23] |
D.R. Bond, D.E. Holmes, L.M. Tender, and D.R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295(2002), No. 5554, p. 483.
|
[24] |
J.S. Huang, P. Yang, Y. Guo, and K.S. Zhang, Electricity generation during wastewater treatment:An approach using AFB-MFC for alcohol distillery wastewater, Desalination, 276(2011), No. 1-3, p. 373.
|
[25] |
F.J. Hernández-Fernández, A. Pérez de los Ríos, M.J. Salar-Garcíaa, V.M. Ortiz-Martíneza, L.J. Lozano-Blancoa, C. Godíneza, F. Tomás-Alonsob, and J. Quesada-Medinab, Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment, Fuel Process. Technol., 138(2015), p. 284.
|
[26] |
C. Choi, N.X. Hu, and B. Lim, Cadmium recovery by coupling double microbial fuel cells, Bioresour. Technol., 170(2014), No. 5, p. 361.
|
[27] |
C. Choi and Y.F. Cui, Recovery of silver from wastewater coupled with power generation using a microbial fuel cell, Bioresour. Technol., 107(2011), No. 2, p. 522.
|
[28] |
Y. Li, A.H. Lu, H.R. Ding, S. Jin, Y.H. Yan, C.Q. Wang, C.P. Zen, and X. Wang, Cr (VI) reduction at rutile-catalyzed cathode in microbial fuel cells, Electrochem. Commun., 11(2009), No. 7, p. 1496.
|
[29] |
B.G. Zhang, C.P. Feng, J.R. Ni, J. Zhang, and W.L. Huang, Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology, J. Power Sources, 204(2012), No. 1, p. 34.
|
[30] |
A.T. Heijne, F. Liu, R. van der Weijden, J. Weijma, C.J.N. Buisman, and H.V.M. Hamelers, Copper recovery combined with electricity production in a microbial fuel cell, Environ. Sci. Technol., 44(2010), No. 11, p. 4376.
|
[31] |
S.A. Cheng, B.S. Wang, and Y.H. Wang, Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters, Bioresour. Technol., 147(2013), No. 11, p. 332.
|
[32] |
L.J. Zhang, H.C. Tao, X.Y. Wei, X.Y. Wei, T. Lei, J.B. Li, A.J. Wang, and W.M. Wu, Bioelectrochemical recovery of ammonia-copper (Ⅱ) complexes from wastewater using a dual chamber microbial fuel cell, Chemosphere, 89(2012), No. 10, p. 1177.
|
[33] |
Z.H. Lu, D.M. Chang, J.X. Ma, G.T. Huang, L.K. Cai, and L.H. Zhang, Behavior of metal ions in bioelectrochemical systems:a review, J. Power Sources, 275(2015), No. 1, p. 243.
|