Cite this article as: | Wen-zhan Huang, Hong-jie Luo, Yong-liang Mu, Hao Lin, and Hao Du, Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles, Int. J. Miner. Metall. Mater., 24(2017), No. 6, pp.701-707. https://dx.doi.org/10.1007/s12613-017-1453-y |
J.H. Gu, X.N. Zhang, Y.F. Qiu, and M.Y. Gu, Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates, Compos. Sci. Technol., 65(2005), No. 11-12, p. 1736.
|
K.K. Deng, J.C. Li, K.B. Nie, X.J. Wang, and J.F. Fan, High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp, Mater. Sci. Eng. A, 624(2015), p. 62.
|
X.H. Liu, H.Y. Huang, and J.X. Xie, Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 687.
|
D.R. Tian, Y.H. Pang, L. Yu, and L. Sun, Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 793.
|
C.S. Liu, Z.G. Zhu, F.S. Han, and J. Banhart, Internal friction of foamed aluminium in the range of acoustic frequencies, J. Mater. Sci., 33(1998), No. 7, p. 1769.
|
F.S. Han, Z.G. Zhu, C.Y. Shi, and Y. Wang, Study on the damping characteristics of foamed aluminum, Acta Phys. Sin., 47(1998), No. 7, p. 1161.
|
J. Banhart, J. Baumeister, and M. Weber, Damping properties of aluminium foams, Mater. Sci. Eng. A, 205(1996), No. 1-2, p. 221.
|
J.N. Wei, C.L. Gong, H.F. Cheng, Z.C. Zhou, Z.B. Li, J.P. Shui, and F.S. Han, Low-frequency damping behavior of foamed commercially pure aluminum, Mater. Sci. Eng. A, 332(2002), No. 1-2, p. 375.
|
J.J Wu, C.G Li, D.B Wang, and M.C Gui, Damping and sound absorption properties of particle reinforced Al matrix composite foams, Compos. Sci. Technol., 63(2003), No. 3-4, p. 569.
|
M.C. Gui, D.B. Wang, J.J. Wu, G.J. Yuan, and C.G. Li, Deformation and damping behaviors of foamed Al-Si-SiCp composite, Mater. Sci. Eng. A, 286(2000), No. 2, p. 282.
|
Y.L. Mu, G.C. Yao, and H.J. Luo, The dependence of damping property of fly ash reinforced closed-cell aluminum alloy foams on strain amplitude, Mater. Des., 31(2010), No. 2, p. 1007.
|
N. Ma, Q.M. Peng, J.L. Pan, H. Li, and W.L. Xiao, Effect of microalloying with rare-earth on recrystallization behaviour and damping properties of Mg sheets, J. Alloys Compd., 592(2014), p. 24.
|
D.H. Yang, S.R. Yang, H. Wang, A.B. Ma, J.H. Jiang, J.Q. Chen, and D.L. Wang, Compressive properties of cellular Mg foams fabricated by melt-foaming method, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5405.
|
L. Chen, C.L. Liu, Q.M. Zhang, Z.G. Xu, and Y.S. Yang, Mechanical properties and energy absorption characteristic of magnesium foam under static and dynamic compression, Acta Armamentarii, 30(2009), Suppl. 2, p. 197.
|
Z.G. Xu, J.W. Fu, T.J. Luo, and Y.S. Yang, Effects of cell size on quasi-static compressive properties of Mg alloy foams, Mater. Des., 34(2012), p. 40.
|
Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure, Mater. Sci. Eng. A, 280(2000), No. 1, p. 225.
|
X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan, and X.J. Wang, Low frequency damping capacities and mechanical properties of Mg-Si alloys, Mater. Sci. Eng. A, 452-453(2007), p. 374.
|
X.S. Hu, Y.K. Zhang, M.Y. Zheng, and K. Wu, A study of damping capacities in pure Mg and Mg-Ni alloys, Scripta Mater., 52(2005), No. 11, p. 1141.
|
X.S. Hu, X.D. He, M.Y. Zheng, and K. Wu, Effect of small tensile deformation on damping capacities of Mg-1% Al alloy, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 2, p. s444.
|
Y.W. Wu, K.Wu, K.K. Deng, K.B. Nie, X.J. Wang, X.S. Hu, and M.Y. Zheng, Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6816.
|
Y.L. Mu, G.C. Yao, G.Y. Zu, and Z.K. Cao, Influence of strain amplitude on damping property of aluminum foams reinforced with copper-coated carbon fibers, Mater. Des., 31(2010), No. 9, p. 4423.
|
I.S. Golovin and H.R. Sinning, Damping in some cellular metallic materials, J. Alloys Compd., 355(2003), No. 1-2, p. 2.
|
1. | Dipak Bhosale, K. Georgy, Manas Mukherjee, et al. Production, stability and properties of ultrafine MgAl2O4 (spinel) particles stabilized Mg–3Ca alloy foams. Journal of Materials Research and Technology, 2024. DOI:10.1016/j.jmrt.2024.01.039 |
2. | Ju Xue, Hak Yong Lee, Kevin J. Hemker, et al. Dynamic and quasi-static mechanical behavior of 3D metallic woven lattices. Materials & Design, 2023, 230: 111959. DOI:10.1016/j.matdes.2023.111959 |
3. | Dipak Bhosale, Akshay Devikar, S. Sasikumar, et al. Foaming Mg Alloy and Composite Using MgCO3 Blowing Agent. Metallurgical and Materials Transactions B, 2021, 52(2): 931. DOI:10.1007/s11663-021-02066-0 |
4. | Mohammad Reza Rezaei, Alireza Albooyeh, Hassan Shiraghaei, et al. Examination of microstructure evolution and strengthening mechanisms in an aluminum-based hybrid composite prepared through the spark plasma sintering method. Metallurgical Research & Technology, 2020, 117(6): 613. DOI:10.1051/metal/2020065 |
5. | Han Wang, Chaoqun Ma, Weimin Zhang, et al. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams. ACS Applied Materials & Interfaces, 2019, 11(45): 42690. DOI:10.1021/acsami.9b10382 |
6. | Di-qing Wan, Ying-lin Hu, Shu-ting Ye, et al. Effect of alloying elements on magnesium alloy damping capacities at room temperature. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 760. DOI:10.1007/s12613-019-1789-6 |
7. | Wen-Zhan Huang, Hong-Jie Luo, Yong-Liang Mu, et al. Dynamic Compressive Property of Closed-Cell Mg Alloy Composite Foams Reinforced with SiC Particles. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1320. DOI:10.1007/s40195-019-00908-0 |
8. | Nima Movahedi, Mehdi Taherishargh, Irina Belova, et al. Mechanical and Microstructural Characterization of an AZ91–Activated Carbon Syntactic Foam. Materials, 2018, 12(1): 3. DOI:10.3390/ma12010003 |
9. | Hanghang Zhou, Guibao Qiu, Zhenyun Tian, et al. TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-030-92381-5_72 |