Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan,  and Xiang-xin Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 768-775. https://doi.org/10.1007/s12613-017-1460-z
Cite this article as:
Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan,  and Xiang-xin Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 768-775. https://doi.org/10.1007/s12613-017-1460-z
Research Article

Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃

+ Author Affiliations
  • Corresponding author:

    Tao Jiang    E-mail: jiangt@smm.neu.edu.cn

  • Received: 22 October 2016Revised: 12 March 2017Accepted: 14 March 2017
  • The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.
  • loading
  • [1]
    M. Parthasarathy and D.J. Klingenberg, Electrorheology:mechanisms and models, Mater. Sci. Eng. R, 17(1996), No. 2, p. 57.
    [2]
    Y. Hirose and Y. Otsubo, Electrorheology of suspensions of poly (ethylene glycol)/poly (vinyl alcohol) blend particles, Colloids Surf. A, 317(2008), No. 1-3, p. 438.
    [3]
    H. Block and J.P. Kelly, Electro-rheology, J. Phys. D, 21(1988), No. 12, p. 1661.
    [4]
    T. Hao, Electrorheological fluids, Adv. Mater., 13(2001), No. 24, p. 1847.
    [5]
    T. Hao, Electrorheological suspensions, Adv. Colloid Interface Sci., 97(2002), No. 1-3, p. 1.
    [6]
    T.C. Jordan and M.T. Shaw, Electrorheology, MRS Bull., 16(1991), No. 8, p. 38.
    [7]
    T. Jiang, D.M. Liao, M. Zhou, Q.Y. Zhang, H.R. Yue, S.T. Yang, P.N. Duan, and X.X. Xue, Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 804.
    [8]
    G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.
    [9]
    S.F. Zhang, X. Zhang, W. Liu, X.W. Lv, C.G. Bai, and L. Wang, Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag, J. Non-Cryst. Solids, 402(2014), p. 214.
    [10]
    S. Ren, J.L. Zhang, L.S. Wu, W.J. Liu, Y.N. Bai, X.D. Xing, B.X. Su, and D.W. Kong, Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag, ISIJ Int., 52(2012), No. 6, p. 984.
    [11]
    J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 133.
    [12]
    T. Jiang, H.R. Yue, X.X. Xue, P.N. Duan, and Q.Y. Zhang, An Equipment of Electrorheological Effect Testing of Titanium-bearing Slag, Chinese Patent, Appl.201520798586.0, 2016.
    [13]
    P. Coussot, L. Tocquer, C. Lanos, and G. Ovarlez, Macroscopic vs. local rheology of yield stress fluids, J. Non-Newtonian Fluid Mech., 158(2009), No. 1-3, p. 85.
    [14]
    F.K. Oppong and J.R.D Bruyn, Mircorheology and jamming in a yield-stress fluid, Rheol. Acta, 50(2011), No. 4, p. 317.
    [15]
    T. Divoux, C. Barentin, and S. Manneville, Stress overshoot in a simple yield stress fluid:An extensive study combining rheology and velocimetry, Soft Matter, 7(2011), No. 19, p. 9335.
    [16]
    H.S. Tang and D.M. Kalyon, Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers, Rheol. Acta, 43(2004), No. 1, p. 80.
    [17]
    R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., 3(1952), No. 8, p. 267.
    [18]
    Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), No. 1, p. 155.
    [19]
    X.Y. Yuan, L.F. Chen, and L.T. Zhang, Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites, Ceram. Int., 40(2014), No. 10, p. 15391.
    [20]
    A. Lengálová, V. Pavlı́nek, P. Sáha, J. Stejskal, and O. Quadrat, Electrorheology of polyaniline-coated inorganic particles in silicone oil, J. Colloid Interface Sci., 258(2003), No. 1, p. 174.
    [21]
    A.P. Gast and C.F. Zukoski, Electrorheological fluids as colloidal suspensions, Adv. Colloid Interface Sci., 30(1989), No. 89, p. 153.
    [22]
    L.C. Davis, Polarization forces and conductivity effects in electrorheological fluids, J. Appl. Phys., 72(1992), No. 4, p. 1334.
    [23]
    R.A. Anderson, Electrostatic forces in an ideal spherical-particle electrorheological fluid, Langmuir, 10(1994), No. 9, p. 2917.
    [24]
    T. Hao, A. Kawai, and F. Ikazaki, The yield stress equation for the electrorheological fluids, Langmuir, 16(2000), No. 7, p. 3058.
    [25]
    K.D. Weiss, J.D. Carlson, and J.P. Coulter, Material aspects of electrorheological systems, J. Intell. Mater. Syst. Struct., 4(1993), No. 1, p. 13.[1] C.F. Zukoski, Material properties and the electrorheological response, Annu. Rev. Mater. Sci., 23(1993), No. 1, p. 45.
    [26]
    D.J. Klingenberg and I.V. Charles, Studies on the steady-shear behavior of electrorheological suspensions, Langmuir, 6(1990), No. 1, p. 15.
    [27]
    J.W. Goodwin, G.M. Markham, and B. Vincent, Studies on model electrorheological fluids, J. Phys. Chem. B, 101(1997), No. 11, p. 1961.
    [28]
    J.K.G. Dhont and K. Kang, Electric-field-induced polarization of the layer of condensed ions on cylindrical colloids, Eur. Phys. J. E, 34(2011), No. 4, p. 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(542) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return