Cite this article as: |
Shuang Huang, Hua-lan Xu, Sheng-liang Zhong, and Lei Wang, Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 7, pp. 794-803. https://doi.org/10.1007/s12613-017-1463-9 |
Sheng-liang Zhong E-mail: slzhong@jxnu.edu.cn
Lei Wang E-mail: wangleifly2006@126.com
[1] |
Z.X. Qu, C.L. Wan, and W. Pan, Thermophysical properties of rare-earth stannates:effect of pyrochlore structure, Acta Mater., 60(2012), No. 6-7, p. 2939.
|
[2] |
J. Lian, K.B. Helean, B.J. Kennedy, L.M. Wang, A. Navrotsky, and R.C. Ewing, Effect of structure and thermodynamic stability on the response of lanthanide stannate-pyrochlores to ion beam irradiation, J. Phys. Chem. B, 110(2006), No. 5, p. 2343.
|
[3] |
L.G. Kong, I. Karatchevtseva, M.G. Blackford, N. Scales, and G. Triani, Aqueous chemical synthesis of Ln2Sn2O7 pyrochlore-structured ceramics, J. Am. Ceram. Soc., 96(2013), No. 9, p. 2994.
|
[4] |
W.J. Wang, S.J. Liang, J.H. Bi, J.C. Yu, P.K. Wong, and L. Wu, Lanthanide stannate pyrochlores Ln2Sn2O7(Ln=Nd, Sm, Eu, Gd, Er, Yb) nanocrystals:synthesis, characterization, and photocatalytic properties, Mater. Res. Bull., 56(2014), p. 86.
|
[5] |
J. Zeng, H. Wang, Y.C. Zhang, M.K. Zhu, and H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C, 111(2007), No. 32, p. 11879.
|
[6] |
Z. Dohnalová, P. Šulcová, and M. Trojan, Preparation and selected properties of pigments on base of Ln-doped CaSnO3, J. Therm. Anal. Calorim., 93(2008), No. 3, p. 857.
|
[7] |
A.A. Biswas and Y.M. Jana, Estimation of single-ion anisotropies, crystal-field and exchange interactions in Gd-based frustrated pyrochlore anti-ferromagnets Gd2M2O7(M=Ti, Sn, Hf, Zr), J. Magn. Magn. Mater., 323(2011), No. 24, p. 3202.
|
[8] |
R.S. Freitas and J.S. Gardner, The magnetic phase diagram of Gd2Sn2O7, J. Phys. Condens. Matter., 23(2011), art. No. 164215.
|
[9] |
J.R. Stewart, J.S. Gardner, Y. Qiu, and G. Ehlers, Collective dynamics in the Heisenberg pyrochlore antiferromagnet Gd2Sn2O7, Phys. Rev. B, 78(2008), art. No. 132410.
|
[10] |
J.Y. Yang, Y.C. Su, H.B. Li, X.Y. Liu, and Z. Chen, Hydrothermal synthesis and photoluminescence of Ce3+ and Tb3+ doped La2Sn2O7 nanocrystals, J. Alloys Compd., 509(2011), No. 31, p. 8008.
|
[11] |
D.L. Jin, X.J. Yu, H. Yang, H.L. Zhu, L.N. Wang, and Y.F. Zheng, Hydrothermal synthesis and luminescence properties of Yb3+ doped rare earth stannates, J. Alloys. Compd., 474(2009), No. 1-2, p. 557.
|
[12] |
A. Ege, M. Ayvacikli, O. Dincer, and S.U. Satilmis, Spectral emission of rare earth (Tb, Eu, Dy) doped Y2Sn2O7 phosphors, J. Lumin., 143(2013), p. 653.
|
[13] |
E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, and E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations, J. Appl. Phys., 112(2012), art. No. 043703.
|
[14] |
J. Feng, B. Xiao, R. Zhou, and W. Pan, Thermal expansion and conductivity of RE2Sn2O7(RE=La, Nd, Sm, Gd, Er and Yb) pyrochlores, Scripta Mater., 69(2013), No. 5, p. 401.
|
[15] |
J.Y. Yang, Y.C. Su, and X.Y. Liu, Hydrothermal synthesis, characterization and optical properties of La2Sn2O7:Eu3+micro-octahedra, Trans. Nonferrous Met. Soc. China, 21(2011), No. 3, p. 535.
|
[16] |
Z.L. Fu, W.D. Gong, H.Y. Li, Q. Wu, W.H. Li, H.K. Yang, and J.H. Jeong, Synthesis and spectral properties of nanocrystalline Eu3+-doped pyrochlore oxide M2Sn2O7(M=Gd and Y), Curr. Appl. Phys., 11(2011), No. 3, p. 933.
|
[17] |
M.R. Mitchell, S.W. Reader, K.E. Johnston, C.J. Pickard, K.R. Whittle, and S.E. Ashbrook, 119Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores, Phys. Chem. Chem. Phys., 13(2011), No. 2, p. 488.
|
[18] |
K.E.J. Eurenius, E. Ahlberg, and C.S. Knee, Proton conductivity in Sm2Sn2O7 pyrochlores, Solid State Ionics, 181(2010), No. 35-36, p. 1577.
|
[19] |
H.L. Zhu, D.L. Jin, L.M. Zhu, H. Yang, K.H. Yao, and Z.Q. Xi, A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates:Ln2Sn2O7(Ln=Y, La-Yb), J. Alloys Compd., 464(2008), No. 1-2, p. 508.
|
[20] |
J.S. Tian, H.G. Peng, X.L. Xu., W.M. Liu, Y.H. Ma, X. Wang, and X.J. Yang, High surface area La2Sn2O7 pyrochlore as a novel, active and stable support for Pd for CO oxidation, Catal. Sci. Technol., 5(2015), No. 4, p. 2270.
|
[21] |
Z. Fu, H.K. Yang, B.K. Moon, B.C. Choi, and J.H. Jeong, La2Sn2O7:Eu3+micronanospheres:hydrothermal synthesis and luminescent properties, Cryst. Growth Des., 9(2009), No. 1, p. 616.
|
[22] |
H. Cheng, L.P. Wang, and Z.G. Lu, A general aqueous sol-gel route to Ln2Sn2O7 nanocrystals, Nanotechnology, 19(2008), No. 2.
|
[23] |
Z.G. Lu, J.W. Wang, Y.G. Tang, and Y.D. Li, Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals, J. Solid State Chem., 177(2004), No. 9, p. 3075.
|
[24] |
E. Lopez-Navarrete, V.M. Orera, F.J. Lazaro, J.B. Carda, and M. Ocana, Preparation through aerosols of Cr-doped Y2Sn2O7(pyrochlore) red-shade pigments and determination of the Cr oxidation state, J. Am. Ceram. Soc., 87(2004), No. 11, p. 2108.
|
[25] |
D. Maestre, E. Hernández, A. Cremades, M. Amati, and J. Piqueras, Synthesis and characterization of small dimensional structures of Er-doped SnO2 and erbium-tin-oxide, Cryst. Growth Des., 12(2012), No. 5, p. 2478.
|
[26] |
S.M. Wang, Z.L. Xiu, M.K. Lü, A.Y. Zhang, Y.Y. Zhou, and Z.S. Yang, Combustion synthesis and luminescent properties of Dy3+-doped La2Sn2O7 nanocrystals, Mater. Sci. Eng. B, 143(2007), No. 1-3, p. 90.
|
[27] |
S.M. Wang, G.J. Zhou, M.K. Lu, Y.Y. Zhou, S.F. Wang, and Z.S. Yang, Synthesis and characterization of lanthanum stannate nanoparticles, J. Am. Ceram. Soc., 89(2006), No. 9, p. 2956.
|
[28] |
M.B. Gawande, S.N. Shelke, R. Zboril, and R.S. Varma, Microwave-assisted chemistry:synthetic applications for rapid assembly of nanomaterials and organics, Acc. Chem. Res., 47(2014), No. 4, p. 1338.
|
[29] |
Y.J. Zhu and F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev., 114(2014), No. 12, p. 6462.
|
[30] |
J.A. Dahl, B.L.S. Maddux, and J.E. Hutchison, Toward greener nanosynthesis, Chem. Rev., 107(2007), No. 6, p. 2228.
|
[31] |
C. Yang, J.D. Wang, F. Xiao, and X.T. Su, Microwave hydrothermal disassembly for evolution from CuO dendrites to nanosheets and their applications in catalysis and photo-catalysis, Powder Technol., 264(2014), p. 36.
|
[32] |
A. Rizzuti, M. Dassisti, P. Mastrorilli, M.C. Sportelli, N. Cioffi, R.A. Picca, E. Agostinelli, G. Varvaro, and R. Caliandro, Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives, J. Nanopart. Res., 17(2015), No. 10, p. 408.
|
[33] |
M.M. Shi, L. Wang, Z.W. Nie, Y.X. Zhao, S.L. Zhong, and C.H. Zeng, Straw-sheaf-like terbium-based coordination polymer architectures:microwave-assisted synthesis and their application as selective luminescent probes for heavy metal ions, New J. Chem., 39(2015), No. 4, p. 2973.
|
[34] |
S.L. Zhong, H.Y. Jing, Y. Li, S.G. Yin, C.H. Zeng, and L. Wang, Coordination polymer submicrospheres:fast microwave synthesis and their conversion under different atmospheres, Inorg. Chem., 53(2014), No. 16, p. 8278.
|
[35] |
R. Trujillano, V. Rives, M. Douma, and E.H. Chtoun, Microwave hydrothermal synthesis of A2Sn2O7(A=Eu or Y), Ceram. Int., 41(2015), No. 2, p. 2266.
|
[36] |
J.Y. Yang, Y.C. Su, Z. Chen, and X.Y. Liu, Hydrothermal synthesis and characterization of nanocrystalline Gd2Sn2O7:Eu3+phosphors, Adv. Mater. Res., 239-242(2011), p. 2851.
|
[37] |
S.K. Shi, L.Y. He, L.N. Geng, L.H. Jiang, S.P. Wang, J.J. Zhang, and J. Zhou, Solution combustion synthesis and enhanced luminescence of Eu3+-activated Y2Ce2O7 phosphor nanopowders, Ceram. Int., 41(2015), No. 9, p. 11960.
|
[38] |
B.J. Kennedy, B.A. Hunter, and C.J. Howard, Structural and bonding trends in tin pyrochlore oxides, J. Solid State Chem., 130(1997), No. 1, p. 58.
|
[39] |
J.Y. Yang and Y.C. Su, Novel 3D octahedral La2Sn2O7:Eu3+microcrystals:Hydrothermal synthesis and photoluminescence properties, Mater. Lett., 64(2010), No. 3, p. 313.
|