Cite this article as:

Research Article

Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition

+ Author Affiliations
  • Corresponding author:

    Hui-ping Duan    E-mail: hpduan@buaa.edu.cn

  • Received: 5 December 2016Revised: 27 March 2017Accepted: 30 March 2017
  • The mechanical properties and microstructure of the 3D-printed high Co-Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron microscopy. A microstructure investigation revealed that the samples consist of martensite laths, fine dispersed precipitates, and reverted austenite films at the martensite lath boundaries. The precipitates are enriched with Co and Mo. Because the sample tempered at 486℃ has smaller precipitates and a higher number of precipitates per unit area, it exhibits better mechanical properties than the sample tempered at 498℃. Although the 3D-printed samples have the same phase constituents as AerMet 100 steel, the mechanical properties are slightly worse than those of the commercial wrought AerMet 100 steel because of the presence of voids.
  • 加载中
  •  

  • [1] P.M. Machmeier, C.D. Little, M.H. Horowitz, and R.P. Oates, Development of a strong (1650MNm-2 tensile strength) martensitic steel having good fracture toughness, Met. Technol., 6(1979), No. 1, p. 291.
    [2] R. Ayer and P.M. Machmeier, Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels, Metall. Mater. Trans. A, 27(1996), No. 9, p. 2510.
    [3] J. Schmidt and F. Haessner, Recovery and recrystallization of high purity lead determined with a low temperature calorimeter, Scripta Metall. Mater., 25(1991), No. 4, p. 969.
    [4] R.M. Hemphill and D.E. Wert, High Strength, High Fracture Toughness Structural Alloy, US Patent, No. 07/475773, 1992.
    [5] G.B. Olson, Genomic materials design:The ferrous frontier, Acta Mater., 61(2013), p. 771.
    [6] R. Ayer and P.M. Machmeier, Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100, Metall. Trans. A, 24(1993), No. 9, p. 1943.
    [7] R. Ayer and P. Machmeier, On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel, Metall. Mater. Trans. A, 29(1998), No. 3, p. 903.
    [8] Y.J. Zhao, X.P. Ren, W.C. Yang, and Y. Zang, Design of a low-alloy high-strength and high-toughness martensitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 733.
    [9] W.E. Frazier, Metal additive manufacturing:a review, J. Mater. Eng. Perform, 23(2014), No. 6, p. 1917.
    [10] Y.Z. Zhang, C. Huang, and R. Vilar, Microstructure and properties of laser direct deposited CuNi17Al3Fe1.5Cr alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 325.
    [11] M. Yan, S.Q. Zhang, and H.M. Wang, Solidification microstructure and mechanical properties of corrosion-resistant ultrahigh strength steel AerMet 100 fabricated by laser melting deposition, Acta Metall. Sinica, 43(2007), No. 5, p. 472.
    [12] X.Z. Ran, D. Liu, A. Li, H.M. Wang, H.B. Tang, and X. Cheng, Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel, Mater. Sci. Eng. A, 663(2016), p. 69.
    [13] T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing, J. Alloys Compd., 632(2015), p. 505.
    [14] C.C. Wang, C. Zhang, and Z.G. Yang, Austenite layer and precipitation in high Co-Ni maraging steel, Micron, 67(2014), p. 112.
    [15] E. Clementi, D.L. Raimondi, and W.P. Reinhardt, Atomic screening constants from SCF Functions. Ⅱ. Atoms with 37 to 86 electrons, J. Chem. Phys., 47(1967), No. 4, p. 1300.
    [16] C.C. Wang, C. Zhang, Z.G. Yang, J. Su, and Y.Q. Weng, Analysis of fracture toughness in high Co-Ni secondary hardening steel using FEM, Mater. Sci. Eng. A, 646(2015), p. 1.
    [17] X.H. Shi, W.D. Zeng, Q.Y. Zhao, W.W. Peng, and C. Kang, Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482℃, J. Alloy. Compd., 679(2016), p. 184.
  • [1] Tong Chen, Li-hua Yu, and  Jun-hua Xu, Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films, Int. J. Miner. Metall. Mater., 2018, 25(1): 110-115. https://doi.org/10.1007/s12613-018-1553-3
    [2] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 2018, 25(11): 1294-1303. https://doi.org/10.1007/s12613-018-1682-8
    [3] Chen-yang Qiu, Lang Li, Lei-lei Hao, Jian-gong Wang, Xun Zhou, and  Yong-lin Kang, Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel, Int. J. Miner. Metall. Mater., 2018, 25(5): 536-546. https://doi.org/10.1007/s12613-018-1600-0
    [4] Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, and  Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 2018, 25(12): 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
    [5] Li Lin, Bao-shun Li, Guo-ming Zhu, Yong-lin Kang, and  Ren-dong Liu, Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel, Int. J. Miner. Metall. Mater., 2018, 25(10): 1181-1190. https://doi.org/10.1007/s12613-018-1670-z
    [6] Zhi-hao Zhang, Jie Xue, Yan-bin Jiang, and  Feng Jin, Effect of pre-annealing treatment on the microstructure and mechanical properties of extruded Al-Zn-Mg-Cu alloy bars, Int. J. Miner. Metall. Mater., 2017, 24(11): 1284-1292. https://doi.org/10.1007/s12613-017-1521-3
    [7] Lavish Kumar Singh, Alok Bhadauria, Amirthalingam Srinivasan, Uma Thanu Subramonia Pillai, and  Bellambettu Chandrasekhara Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy, Int. J. Miner. Metall. Mater., 2017, 24(8): 901-908. https://doi.org/10.1007/s12613-017-1476-4
    [8] Z. M. Sheggaf, R. Ahmad, M. B. A. Asmael, and  A. M. M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., 2017, 24(11): 1306-1320. https://doi.org/10.1007/s12613-017-1523-1
    [9] Behzad Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater., 2017, 24(9): 1010-1020. https://doi.org/10.1007/s12613-017-1490-6
    [10] Mustafa K. Ibrahim, E. Hamzah, Safaa N. Saud, E. N. E. Abu Bakar, and  A. Bahador, Microwave sintering effects on the microstructure and mechanical properties of Ti-51at%Ni shape memory alloys, Int. J. Miner. Metall. Mater., 2017, 24(3): 280-288. https://doi.org/10.1007/s12613-017-1406-5
    [11] A. R. Sufizadeh and  S. A. A. Akbari Mousavi, Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels, Int. J. Miner. Metall. Mater., 2017, 24(5): 538-549. https://doi.org/10.1007/s12613-017-1435-0
    [12] Chun-fu Kuang, Zhi-wang Zheng, Min-li Wang, Quan Xu, and  Shen-gen Zhang, Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel, Int. J. Miner. Metall. Mater., 2017, 24(12): 1379-1383. https://doi.org/10.1007/s12613-017-1530-2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(158) PDF downloads(0) Cited by()

Proportional views

Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition

  • Corresponding author:

    Hui-ping Duan    E-mail: hpduan@buaa.edu.cn

  • 1) School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 2) National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beijing 100191, China
  • 3) Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, Beijing 100191, China

Abstract: The mechanical properties and microstructure of the 3D-printed high Co-Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron microscopy. A microstructure investigation revealed that the samples consist of martensite laths, fine dispersed precipitates, and reverted austenite films at the martensite lath boundaries. The precipitates are enriched with Co and Mo. Because the sample tempered at 486℃ has smaller precipitates and a higher number of precipitates per unit area, it exhibits better mechanical properties than the sample tempered at 498℃. Although the 3D-printed samples have the same phase constituents as AerMet 100 steel, the mechanical properties are slightly worse than those of the commercial wrought AerMet 100 steel because of the presence of voids.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return