Cite this article as: |
Yuan-ji Shi, Xiao-chun Wu, Jun-wan Li, and Na Min, Tempering stability of Fe-Cr-Mo-W-V hot forging die steels, Int. J. Miner. Metall. Mater., 24(2017), No. 10, pp. 1145-1157. https://doi.org/10.1007/s12613-017-1505-3 |
Yuan-ji Shi E-mail: syuanj@163.com
[1] |
D.H. Kim, H.C. Lee, B.M. Kim, and K.H. Kim, Estimation of die service life against plastic deformation and wear during hot forging processes, J. Mater. Process. Technol., 166(2005), No. 3, p. 372.
|
[2] |
K. Frisk, Simulation of precipitation of secondary carbides in hot work tool steels, Mater. Sci. Technol., 28(2012), No. 3, p. 288.
|
[3] |
S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura, Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction, Metall. Trans. A, 14(1983), No. 6, p. 1025.
|
[4] |
K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande, Spinodal decomposition during aging of Fe-Ni-C martensites, Metall. Trans. A, 20(1989), No. 12, p. 2717.
|
[5] |
V.H. Baltazar Hernandez, S.S. Nayak, and Y. Zhou, Tempering of martensite in dual-phase steels and its effects on softening behavior, Metall. Mater. Trans. A, 42(2011), No. 10, p. 3115.
|
[6] |
L.Q. Xu, D.T. Zhang, Y.C. Liu, B.Q. Ning, Z.X. Qiao, Z.S. Yan, and H.J. Li, Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 438.
|
[7] |
G. Ghosh and G.B. Olson, Precipitation of paraequilibrium cementite:Experiments, and thermodynamic and kinetic modeling, Acta Mater., 50(2002), No. 8, p. 2099.
|
[8] |
S. Björklund, L.F. Donaghey, and M. Hillert, The effect of alloying elements on the rate of Ostwald ripening of cementite in steel, Acta Metall., 20(1972), No. 7, p. 867.
|
[9] |
B. Kim, C. Celada, D. San Martín, T. Sourmail, and P.E.J. Rivera-Díaz-del-Castillo, The effect of silicon on the nanoprecipitation of cementite, Acta Mater., 61(2013), No. 18, p. 6983.
|
[10] |
G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T Maki, Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6 mass% C martensite, Acta Mater., 55(2007), No. 15, p. 5027.
|
[11] |
R.C. Thomson and M.K. Miller, The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels, Appl. Surf. Sci., 87-88(1995), No. 3, p. 185.
|
[12] |
J. Pilling and N. Ridley, Tempering of 2.25 pct Cr-1 pct Mo low carbon steels, Metall. Trans. A, 13(1982), No. 4, p. 557.
|
[13] |
R.G. Baker and J. Nutting, The tempering of 2.25Cr-1Mo steel after quenching and normalizing, J. Iron Steel Inst., 192(1959), p. 257
|
[14] |
A. Inoue and T. Masumoto, Carbide reactions (M3C → M7C3→ M23C6→ M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metall. Trans. A, 11(1980), No. 5, p. 739.
|
[15] |
P. Chakraborty, V. Kain, P.K. Pradhan, R.K. Fotedar, and N. Krishnamurthy, Corrosion of modified 9Cr-1Mo steel and Indian RAFMS in static Pb-17Li at 773 K, J. Fusion Energy, 34(2015), No. 2, p. 293.
|
[16] |
R. Viswanathan and W.T. Bakker, Materials for ultrasupercritical coal power plants-Boiler materials:Part 1, J. Mater. Eng. Perform., 10(2001), No. 1, p. 81.
|
[17] |
S.I. Porollo, A.M. Dvoriashin, Y.V. Konobeev, and F.A. Gamer, Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60, J. Nucl. Mater., 329-333(2004), p. 314.
|
[18] |
R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 50(2005), No. 5, p. 287.
|
[19] |
S. Moniri, M. Ghoranneviss, M.R. Hantehzadeh, and A. Salar Elah, Nano-scale precipitates of reduced activation steels for the application of nuclear fusion reactors, J. Fusion Energy, 34(2015), No. 3, p. 449.
|
[20] |
M. Nurbanasari, P. Tsakiropoulos, and E.J. Palmiere, Microstructural evolution of a heat-treated H23 tool steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 272.
|
[21] |
T. Mukherjee, Materials for Metal Cutting, ISI Publication, London, 1970, p. 80.
|
[22] |
Y.T. Zhang, L.D. Miao, X.J. Wang, H.Q. Zhang, and J.F. Li, Evolution behavior of carbides in 2.25Cr-1Mo-0.25V steel, Mater. Trans., 50(2009), No. 11, p. 2507.
|
[23] |
Y. Zhang, Application of Phase Equilibrium Thermodynamic Method in Alloy Design for High Carbon Alloy Steel with Ultra-Fine Carbides[Dissertation], Dalian Maritime University, Dalian, 2007.
|
[24] |
R. Ishii, Y. Tsuda, M. Yamada, and K. Kimura, Fine precipitates in high chromium heat resisting steels, Tetsu-to-Hagane, 88(2002), No. 1, p. 36.
|
[25] |
T. Onizawa, T. Wakai, M. Ando, and K. Aoto, Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel, Nucl. Eng. Des., 238(2008), No. 2, p. 408.
|
[26] |
R.A. Mesquita and H.J. Kestenbach, Influence of silicon on secondary hardening of 5wt% Cr steels, Mater. Sci. Eng. A, 556(2012), p. 970.
|
[27] |
A. Medvedeva, J. Bergström, S. Gunnarsson, and J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 39.
|
[28] |
P. Bała and J. Pacyna, The kinetics of phase transformations during tempering in high-speed steels, J. Ach. Mater. Manuf. Eng., 23(2007), No. 2, p. 15.
|
[29] |
W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135(1939), No. 8, p. 416.
|
[30] |
M. Avrami, Kinetics of phase change. I General theory, J. Chem. Phys., 7(1939), No. 12, p. 1103.
|
[31] |
M. Avrami, Kinetics of phase change. Ⅱ Transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8(1940), No. 2, p. 212.
|
[32] |
M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. Ⅲ, J. Chem. Phys., 9(1941), No. 2, p. 177.
|
[33] |
E. López-Martínez, O. Vázquez-Gómez, H.J. Vergara-Hernández, and B. Campillo, Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels, Int. J. Miner., Metall. Mater., 22(2015), No. 12, p. 1304.
|
[34] |
I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19(1961), No. 1-2, p. 35.
|
[35] |
C. Wagner, Theorie der alterung von niederschlägen durch umlösen, Z. Elektrochem., 65(1961), No. 7-8, p. 581.
|
[36] |
B.A. Lindsley and A.R. Marder, Solid particle erosion of an Fe-Fe3C metal matrix composite, Metall. Mater. Trans. A, 29(1998), No. 3, p. 1071.
|
[37] |
W.J. Nam and C.M. Bae, Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel, Scripta Mater., 41(1999), No. 3, p. 313.
|
[38] |
L.R. Liu, T. Jin, N.R. Zhao, X.F. Sun, H.R. Guan, and Z.Q Hu, Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy, Mater. Sci. Eng. A, 361(2003), No. 1-2, p. 191.
|
[39] |
L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu, Effect of carbides on the creep properties of a Ni-base superalloy M963, Mater. Sci. Eng. A, 397(2005), No. 1, p. 297.
|
[40] |
H.B. Wu, S.W. Yan, S.Q. Yuan, C.J. Shang, X.M. Wang, and X.L. He, Effect of isothermal relaxation on thermo-stability of non-equilibrium microstructure in micro-alloyed steel, Acta Metall. Sinica, 41(2005), No. 4, p. 385.
|
[41] |
M.T.C. Ferrari, J. Andersson, and M. Kvarnström, Influence of lowered austenitisation temperature during hardening on tempering resistance of modified H13 tool steel (Uddeholm Dievar), Int. Heat Treat. Surf. Eng., 7(2013), No. 3, p. 129.
|
[42] |
N. Gope, A. Chatterjee, T. Mukherjee, and D.S. Sarma, Influence of long-term aging and superimposed creep stress on the microstructure of 2.25Cr-1Mo steel, Metall. Trans. A, 24(1993), No. 2, p. 315.
|
[43] |
R.C. Yang, K. Chen, H.X. Feng, and H. Wang, Determination and application of larson-miller parameter for heat resistant steel 12CrlMoV and 15CrMo, Acta Metall. Sinica (Engl. Lett.), 17(2004), No. 4, p. 471.
|
[44] |
R.C. Yang, K. Chen, H.X. Feng, and H. Wang, Variation of substructures of pearlitic heat resistant steel after high temperature aging, Acta Metall. Sinica (Engl. Lett.), 17(2004), No. 4, p. 477.
|
[45] |
Q.C. Zhou, X.C. Wu, N.N. Shi, J.W. Li, and N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5696.
|
[46] |
H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels Microstructure and Properties, 3rd Ed., Elsevier, Oxford, 2006, p. 195.
|
[47] |
S. Karagöz, H.F. Fischmeister, H.O. Andrén, and G.J. Cai, Microstructural changes during overtempering of high-speed steels, Metall. Trans. A, 23(1992), No. 6, p. 1631.
|
[48] |
J. Guo, H.W. Qu, L.G. Liu, Y.L. Sun, Y. Zhang, and Q.X. Yang, Study on stable and meta-stable carbides in a high speed steel for rollers during tempering processes, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 146.
|
[49] |
K.J. Kurzydłowski and W. Zieliński, Mo2C → M6C carbide transformation in low alloy Cr-Mo ferritic steels, Met. Sci., 18(1984), No. 4, p. 223.
|
[50] |
X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, Int. J. Fatigue, 28(2006), No. 3, p. 175.
|
[51] |
N. Dudova and R. Kaibyshev, On the precipitation sequence in a 10% Cr steel under tempering, ISIJ Int., 51(2011), No. 5, p. 826.
|
[52] |
M. Jung, S.J. Lee, and Y.K. Lee, Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel, Metall. Mater. Trans. A, 40(2009), No. 3, p. 551.
|
[53] |
P. Bała, The kinetics of phase transformations during tempering of tool steels with different carbon content, Arch. Metall. Mater., 54(2009), No. 2, p. 491.
|
[54] |
P. Tao, C. Zhang, Z.G. Yang, and H. Takeda, Evolution of second phase in 2.25Cr-1Mo-0.25V steel weld metal during high temperature tempering, Acta Metall. Sinica, 45(2009), No. 1, p. 51.
|
[55] |
J.G. Jung, M. Jung, S. Kang, and Y.K. Lee, Precipitation behaviors of carbides and Cu during continuous heating for tempering in Cu-bearing medium C martensitic steel, J. Mater. Sci., 49(2014), No. 5, p. 2204.
|
[56] |
H.M. Lee and S.M. Allen, Coarsening resistance of M2C carbides in secondary hardening steels:Part Ⅲ. Comparison of theory and experiment, Metall. Trans. A, 22(1991), No. 12, p. 2877.
|
[57] |
D.M. Davies and B. Ralph, Field ion microscopic study of quenched and tempered Fe-Mo-C, J. Iron Steel Inst., 210(1972), No. 4, p. 262.
|
[58] |
H.M. Lee, S.M. Allen, and M. Grujicic, Coarsening resistance of M2C carbides in secondary hardening steels:Part I. Theoretical model for multicomponent coarsening kinetics, Metall. Trans. A, 22(1991), No. 12, p. 2863.
|
[59] |
Z.Y. Zhao, Studing status on the secondary hardening phenomenon in ultra-high strength steels, J. Aeronaut. Mater., 22(2002), No. 4, p. 46.
|
[60] |
T. Wen, X.F. Hu, Y.Y. Song, D.S. Yan, and L.J. Rong, Carbides and mechanical properties in an Fe-Cr-Ni-Mo high-strength steel with different V contents, Mater. Sci. Eng. A, 588(2013), p. 201.
|
[61] |
S. Suresh, Fatigue of Materials, Cambridge Solid State Science Series[Dissertation], Cambridge University, Cambridge, 1991.
|
[62] |
A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-Armas, Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, J. Nucl. Mater., 307-311(2002), p. 509.
|
[63] |
J. Sjötröm, Chromium Martensitic Hot-work Tool Steels Damage, Performance and Microstructure[Dissertation], Karlstad University, Karlstad, 2004.
|