Effect of weld line positions on the tensile deformation of two-component metal injection moulding
-
Graphical Abstract
-
Abstract
Knowledge of the mechanical properties of two-component parts is critical for engineering functionally graded components. In this study, mono-and two-component tensile test specimens were metal injection moulded. Three different weld line positions were generated in the two-component specimens. Linear shrinkage of the two-component specimens was greater than that of the mono-component specimens because the incompatibility of sintering shrinkage of both materials causes biaxial stresses and enhances sintering. The mechanical properties of 316L stainless steel were affected by the addition of a coloured pigment used to identify the weld line position after injection moulding. For the two-component specimens, the yield stress and ultimate tensile stress were similar to those of 316L stainless steel. Because 316L and 630 (also known as 17-4PH) stainless steels were well-sintered at the interface, the mechanical properties of the weaker material (316L stainless steel) were dominant. However, the elongations of the two-component specimens were lower than those of the mono-component specimens. An interfacial zone with a microstructure that differed from those of the mono-material specimens was observed; its different microstructure was attributed to the gradual diffusion of nickel and copper.
-
-