Cite this article as: |
Qing-quan Lin, Guo-hua Gu, Hui Wang, You-cai Liu, Jian-gang Fu, and Chong-qing Wang, Flotation mechanisms of molybdenite fines by neutral oils, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 1-10. https://doi.org/10.1007/s12613-018-1540-8 |
Guo-hua Gu E-mail: guguohua@126.com
[1] |
T.S. He, H. Wan, N.P. Song, and L. Guo, The influence of composition of nonpolar oil on flotation of molybdenite, Miner. Eng., 24(2011), No. 13, p. 1513.
|
[2] |
S.H. Du and Z.F. Luo, Flotation technology of refractory low-grade molybdenum ore, Int. J. Min. Sci. Technol., 23(2013), No. 2, p. 255.
|
[3] |
J.T. Liu, X.B. Li, Y.T. Wang, Y.J. Can, and F.K. Lv, Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column, J. Cent. South Univ. Sci. Technol., 39(2008), No. 2, p. 300.
|
[4] |
S.X. Song, X.W. Zhang, B.Q. Yang, and A. Lopez-mendoza, Flotation of molybdenite fines as hydrophobic agglomerates, Sep. Purif. Technol., 98(2012), p. 451.
|
[5] |
J.G. Fu, K.D. Chen, H. Wang, C. Guo, and W. Liang, Recovering molybdenite from ultrafine waste tailings by oil agglomerate flotation, Miner. Eng., 39(2012), p. 133.
|
[6] |
T. Xu and C.B. Sun, Aerosol flotation of low-grade refractory molybdenum ores, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1077.
|
[7] |
F. Lucay, L.A. Cisternas, E.D. Gálvez, and A. López-mendoza, Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation, Miner. Metall. Process., 32(2015), No. 4, p. 203.
|
[8] |
J.R. Lince and P.P. Frantz, Anisotropic oxidation of MoS2 crystallites studied by angle-resolved X-ray photoelectron spectroscopy, Tribol. Lett., 9(2000), No. 3-4, p. 211.
|
[9] |
M. Zanin, I. Ametov, S. Grano, L. Zhou, and W. Skinner, A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit, Int. J. Miner. Process., 93(2009), No. 3-4, p. 256.
|
[10] |
S. Kelebek, Critical surface tension of wetting and of floatability of molybdenite and sulphur, J. Colloid Interface Sci., 124(1988), No. 2, p. 504.
|
[11] |
B.Q. Yang, S.X. Song, and A. Lopez-Valdivieso, Effect of particle size on the contact angle of molybdenite powders, Miner. Process. Extr. Metall. Rev., 35(2014), No. 3, p. 208.
|
[12] |
Z.Z. Lu, Q.X. Liu, Z.H. Xu, and H.B. Zeng, Probing anisotropic surface properties of molybdenite by direct force measurements, Langmuir, 31(2015), No. 42, p. 11409.
|
[13] |
B. Triffett, C. Veloo, B.J.I. Adair, and D. Bradshaw, An investigation of the factors affecting the recovery of molybdenite in the Kennecott Utah copper bulk flotation circuit, Miner. Eng., 21(2008), No. 12-14, p. 832.
|
[14] |
S. Castro, A. Lopez-Valdivieso, and J.S. Laskowski, Review of the flotation of molybdenite. Part I:Surface properties and floatability, Int. J. Miner. Process., 148(2016), p. 48.
|
[15] |
F.J. Smit and A.K. Bhasin, Relationship of petroleum hydrocarbon characteristics and molybdenite flotation, Int. J. Miner. Process., 15(1985), No. 1-2, p. 19.
|
[16] |
T.L. Young, M.G. Greene, K. Bauer, N.R. Reber, and S.K. Young, Floatation of Sulphide Mineral Species with Oils, United State Patent, Appl.6827220B1, 2004.
|
[17] |
S.M. Bulatovic, Handbook of Flotation Reagents:Chemistry, Theory and Practice:Volume 1:Flotation of Sulfide Ores, Elsevier Science, 2007, p. 235.
|
[18] |
B.Q. Yang, S.X. Song, and A. Lopez-Valdivieso, Morphology of hydrophobic agglomerates of molybdenite fines in aqueous suspensions, Sep. Sci. Technol., 50(2015), No. 10, p. 1560.
|
[19] |
B.Q. Yang, S.X. Song, and A. Lopez-Valdivieso, Kinetics of hydrophobic agglomeration of molybdenite fines in aqueous suspensions, Physicochem. Probl. Miner. Process., 51(2015), No. 1, p. 181.
|
[20] |
J. Rubio, F. Capponi, R.T. Rodrigues, and E. Matiolo, Enhanced flotation of sulfide fines using the emulsified oil extender technique, Int. J. Miner. Process., 84(2007), No. 1-4, p. 41.
|
[21] |
H. Wang, G.H. Gu, J.G. Fu, L. Chen, and Y. Hao, Study of the interfacial interactions in the molybdenite floatation system, J. China Univ. Min. Technol., 18(2008), No. 1, p. 82.
|
[22] |
C.J. Van Oss, M.K. Chaudhury, and R.J. Good, Monopolar surfaces, Adv. Colloid Interface Sci., 28(1987), p. 35.
|
[23] |
C.J. Van Oss, M.K. Chaudhury, and R.J. Good, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems, Chem. Rev., 88(1988), No. 6, p. 927.
|
[24] |
B. Jańczuk, J.M. Bruque, M.L. González-Martín, and E. Román-Galán, The contribution of double layers to the free energy of interactions in the cassiterite-SDS solution system, Colloids Surf. A, 100(1995), No. 6, p. 93.
|
[25] |
C.Q. Wang, H. Wang, G.H. Gu, J.G. Fu, Q.Q. Lin, and Y.N. Liu, Interfacial interactions between plastic particles in plastics flotation, Waste Manage., 46(2015), p. 56.
|
[26] |
W. Kühnl, A. Piry, V. Kaufmann, T. Grein, S. Ripperger, and U. Kulozik, Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values:a surface energy approach, J. Membr. Sci., 352(2010), No. 1-2, p. 107.
|
[27] |
C.J. Van Oss, Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions, J. Mol. Recognit., 16(2003), No. 4, p.177.
|
[28] |
U. Ojaniemi, M. Riihimäki, M. Manninen, and T. Pättikangas, Wall function model for particulate fouling applying XDLVO theory, Chem. Eng. Sci., 84(2012), p. 57.
|