Cite this article as: |
S. Arunkumar, P. Kumaravel, C. Velmurugan, and V. Senthilkumar, Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis, Int. J. Miner. Metall. Mater., 25(2018), No. 1, pp. 80-87. https://doi.org/10.1007/s12613-018-1549-z |
S. Arunkumar E-mail: shaiarun1978@gmail.com
[1] |
B.S. Shariat, Y. Liu, Q. Meng, and G. Rio, Analytical modelling of functionally graded NiTi shape memory alloy plates under tensile loading and recovery of deformation upon heating, Acta Mater., 61(2013), No. 9, p. 3411.
|
[2] |
J.M. McNaney, V. Imbeni, Y. Jung, P. Papadopoulos, and R.O. Ritchie, An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading, Mech. Mater., 35(2003), No. 10, p. 969.
|
[3] |
G. Tosun and N. Tosun, Analysis of process parameters for porosity in porous NiTi implants, Mater. Manuf. Processes, 27(2012), No. 11, p. 1184.
|
[4] |
S. Kujala, J. Ryhanen, A. Danilov, and J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute, Biomaterials, 24(2003), No. 25, p. 4691.
|
[5] |
T. Kosec, P. Močnik, and A. Legat, The tribocorrosion behaviour of NiTi alloy, Appl. Surf. Sci., 288(2014), p. 727.
|
[6] |
Y.H. Li, G.B. Rao, L.J. Rong, Y.Y. Li, and W. Ke, Effect of pores on corrosion characteristics of porous NiTi alloy in simulated body fluid, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 356.
|
[7] |
K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci., 50(2005), No. 5, p. 511.
|
[8] |
M. Ballas, Z.L. Li, and O.J. Ilegbusi, Modeling reaction front propagation and porosity in pressure-assisted combustion synthesis of porous NiTi intermetallics, J. Mater. Eng. Perform., 21(2012), No. 3, p. 298.
|
[9] |
M. Nazarian-Samani, A.R. Kamali, R. Mobarra, and M. Nazarian-Samani, Phase transformations of Ni-15wt.% B powders during mechanical alloying and annealing, Mater. Lett., 64(2010), No. 3, p. 309.
|
[10] |
C.V. Prica, T.F. Marinca, F. Popa, N.A. Sechel, O. Isnard, and I. Chicinaş, Synthesis of nanocrystalline Ni3Fe powder by mechanical alloying using an extreme friction mode, Adv. Powder Technol., 27(2016), No. 2, p. 395.
|
[11] |
C.L. Chu, C.Y. Chung, P.H. Lin, and S.D. Wang, Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications, J. Mater. Process. Technol., 169(2005), No. 1, p. 103.
|
[12] |
H. Shahmir, M. Nili-Ahmadabadi, Y. Huang, J.M. Jung, H.S. Kim, and T.G. Langdon, Shape memory effect in nanocrystalline NiTi alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 626(2015), p. 203.
|
[13] |
Y. Li, J.Y. Li, M. Liu, Y.Y. Ren, F. Chen, G.C. Yao, and Q.S. Mei, Evolution of microstructure and property of NiTi alloy induced by cold rolling, J. Alloys Compd., 653(2015), p. 156.
|
[14] |
C. Yu, B. Aoun, L.S. Cui, Y.N. Liu, H. Yang, X.H. Jiang, S. Cai, D.Q. Jiang, Z.P. Liu, D.E. Brown, and Y. Ren, Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing, Acta Mater., 115(2016), p. 35.
|
[15] |
S.Y. Jiang, Y.Q. Zhang, L.H. Zhao, and Y.F. Zheng, Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation, Intermetallics, 32(2013), p. 344.
|
[16] |
S.Y. Jiang, L. Hu, Y.N. Zhao, Y.Q. Zhang, and Y.L. Liang, Multiscale investigation of inhomogeneous plastic deformation of NiTi shape memory alloy based on local canning compression, Mater. Sci. Eng. A, 569(2013), p. 117.
|
[17] |
S.Y. Jiang, L. Hu, Y.Q. Zhang, and Y.L. Liang, Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression, J. Non-Cryst. Solids, 367(2013), p. 23.
|
[18] |
Y.Q. Zhang, S.Y. Jiang, L. Hu, and Y.L. Liang, Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature, Mater. Sci. Eng. A, 559(2013), p. 607.
|
[19] |
L. Hu, S.Y. Jiang, Y.Q. Zhang, Y.N. Zhao, S.W. Liu, and C.Z. Zhao, Multiple plastic deformation mechanisms of NiTi shape memory alloy based on local canning compression at various temperatures, Intermetallics, 70(2016), p. 45.
|
[20] |
S.K. Sadrnezhaad, H. Arami, H. Keivan, and R. Khalifehzadeh, Powder metallurgical fabrication and characterization of nanostructured porous NiTi shape-memory alloy, Mater. Manuf. Processes, 21(2006), No. 8, p. 727.
|
[21] |
N. Sharma, T. Raj, and K.K. Jangra, Microstructural evaluation of NiTi-powder, steatite, and steel balls after different milling conditions, Mater. Manuf. Processes, 31(2016), No. 5, p. 628.
|
[22] |
M. Ghadimi, A. Shokuhfar, H.R. Rostami, and M. Ghaffari, Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni-Ti elemental powders, Mater. Lett., 80(2012), p. 181.
|
[23] |
M.M. Verdian, Fabrication of supersaturated NiTi (Al) alloys by mechanical alloying, Mater. Manuf. Processes, 25(2010), No. 12, p. 1437.
|
[24] |
F. Alijani, R. Amini, M. Ghaffari, M. Alizadeh, and A.K. Okyay, Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying, Mater. Des., 55(2014), p. 373.
|
[25] |
A.W. Weeber and H. Bakker, Amorphization by ball milling, A review. Physica B, 153(1988), No. 1-3, p. 93.
|
[26] |
C. Suryanarayana, Mechanical Alloying and Milling, CRC Press, Boca Raton, 2004, p. 59.
|
[27] |
S.K. Sadrnezhaad, H. Arami, H. Keivan, and R. Khalifehzadeh, Powder metallurgical fabrication and characterization of nanostructured porous NiTi shape-memory alloy, Mater. Manuf. Processes, 21(2006), No. 8, p. 727.
|
[28] |
T. Waitz, C. Rentenberger, and H.P. Karnthaler, Bulk nanostructured intermetallic alloys studied by transmission electron,[in] M. J. Zehetbauer and Y. T. Zhu, eds., Bulk Nanostructured Materials, Wiley, New Jersey, 2009, p. 343.
|
[29] |
J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 34.
|
[30] |
D.D. Radev, Mechanical synthesis of nanostructured titanium-nickel alloys, Adv. Powder Technol., 21(2010), No. 4, p. 477.
|
[31] |
H. Ahamed and V. Senthilkumar, Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying, J. Alloys Compd., 505(2010), No. 2, p. 772.
|
[32] |
C. Suryanarayana, T. Klassen, and E. Ivanov, Synthesis of nanocomposites and amorphous alloys by mechanical alloying, J. Mater. Sci., 46(2011), No. 19, p. 6301.
|