Prashant Huilgol, K. Rajendra Udupa, and K. Udaya Bhat, Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 2, pp. 190-198. https://doi.org/10.1007/s12613-018-1562-2
Cite this article as:
Prashant Huilgol, K. Rajendra Udupa, and K. Udaya Bhat, Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 2, pp. 190-198. https://doi.org/10.1007/s12613-018-1562-2
Research Article

Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

+ Author Affiliations
  • Corresponding author:

    Prashant Huilgol    E-mail: prashanthuilgol@gmail.com

  • Received: 17 May 2017Revised: 26 October 2017Accepted: 27 October 2017
  • Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions:an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.
  • loading
  • [1]
    F.L. Yang, X. Xiang, G.D. Lu, G.K. Zhang, T. Tang, Y. Shi, and X.L. Wang, Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers, J. Nucl. Mater., 478(2016), p. 144.
    [2]
    W. Cao, S. Ge, J.F. Song, C.A. Chen, and D.L. Luo, Deuterium permeation barrier by hot-dipping aluminizing on AISI321 steel, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23125.
    [3]
    K. Udaya Bhat, Mild Steel Plates:Aluminizing,[in] R. Colás and G. E. Totten Eds. Encyclopedia of Iron, Steel and Their Alloys (Five volume set), CRC Press, Boca Raton, 2016, p. 2274.
    [4]
    K. Bouché, F. Barbier, and A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminium, Mater. Sci. Eng. A, 249(1998), No. 1-2, p. 167.
    [5]
    D.Q. Wang and Z.Y. Shi, Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel, Appl. Surf. Sci., 227(2004), No. 1-4, p. 255.
    [6]
    W.J. Cheng and C.J. Wang, Growth of intermetallic layer in the aluminide mild steel during hot-dipping, Surf. Coat. Technol., 204(2009), No. 6-7, p. 824.
    [7]
    W.J. Cheng and C.J. Wang, Microstructural evolution of intermetallic layer in hot-dipped aluminide mild steel with silicon addition, Surf. Coat. Technol., 205(2011), No. 19, p. 4726.
    [8]
    A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, Kinetic interactions between solid iron and molten aluminium, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 53.
    [9]
    S. Kobayashi and T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment, Mater. Sci. Eng. A, 338(2002), No. 1-2, p. 44.
    [10]
    V.I. Dybkov, Solid State Reaction Kinetics, IPMS Publications, Kiev, 2013, p. 311.
    [11]
    P. Budberg and A. Prince, Aluminium-Iron-Nickel:Ternary Alloys, Edited by G. Petzow and G. Effenberg, VCH, Weinheim, 1991, p. 309.
    [12]
    M. Palm, The Al-Cr-Fe system-phases and phase equilibria in the Al-rich corner, J. Alloys Compd., 252(1997), No. 1-2, p. 192.
    [13]
    M.J. Cooper, The structure of the intermetallic phase θ (Cr-Al), Acta Crystallogr., 13(1960), No. 3, p. 257.
    [14]
    T. Ohnishi, Y. Nakatani, and K. Okabayashi, Crystal structures of intermetallic θ, η and ε phases in Al-Cr system, Bull. Univ. Osaka Prefecture Ser. A, 24(1976), No. 2, p. 183.
    [15]
    H. Baker and H. Okamoto, ASM Handbook, Vol. 3:Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992, p. 2.
    [16]
    G. Ghosh, K. Korniyenko, T. Velikanova, and V. Sidorko, Aluminium-Chromium-Iron (Iron Systems, Part 1), Springer, Berlin, 2008, p. 1.
    [17]
    S. Chatterjee T.A. Abinandanan, and K. Chattopadhyay, Phase-field simulation of fusion interface events during solidification of dissimilar welds:effect of composition inhomogeneity, Metall. Mater. Trans. A, 39(2008), No. 7, p. 1638.
    [18]
    H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, and J. Hejazi, Microstructural analysis of interfacial reaction between molten aluminium and solid iron, J. Mater. Process. Technol., 124(2002), No. 3, p. 345.
    [19]
    R.M. Walser and R.W. Bené, First phase nucleation in silicon-transitionmetal planar interfaces, Appl. Phys. Lett., 28(1976), No. 10, p. 624.
    [20]
    F.M. d'Heurle, Interface reactions with formation of a solid phase on a solid substrate:A short overview, Mater. Sci. Forum, 155-156(1994), p. 1.
    [21]
    J. Philibert, Interplay of diffusion and interface processes in multiphase diffusion, Defect Diffus. Forum, 95-98(1993), p. 493.
    [22]
    V.N. Yeremenko, Y.V. Natanzon, and V.I. Dybkov, The effect of dissolution on the growth of the Fe2Al5, interlayer in the solid iron-liquid aluminium system, J. Mater. Sci., 16(1981), No. 7, p. 1748.
    [23]
    N.J.E. Adkins, N. Saunders, and P. Tsakiropoulos, Rapid solidification of peritectic aluminium alloys, Mater. Sci. Eng., 98(1988), p. 217.
    [24]
    S. Sharafi and M.R. Farhang, Effect of aluminizing on surface microstructure of an HH309 stainless steel, Surf. Coat. Technol., 200(2006), No. 16-17, p. 5048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (201) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return