Cite this article as: | Hassan Esmaili, Amir Kotobi, Saeed Sheibani, and Fereshteh Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, pp.244-252. https://dx.doi.org/10.1007/s12613-018-1567-x |
A. Ameta, R. Ameta, and M. Ahuja, Photocatalytic degradation of methylene blue over ferric tungstate, Sci. Revs. Chem. Commun., 3(2013), No. 3, p. 172.
|
C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol. A, 158(2003), No. 27-36, p. 27.
|
S.S. Patil and V.M. Shinde, Biodegradation studies of aniline and nitrobenzene in aniline plant waste water by gas chromatography, Environ. Sci. Technol., 22(1988), No. 10, p. 1160.
|
A. Houas, I. Bakir, M. Ksibi, and E. Laloui, Removal of a methylene blue from aqueous solution over the commercial activated charcoal CECA40, J. Chim. Phys. Phys. Chim. Biol., 96(1999), No. 3, p. 479.
|
Y.M. Slokar and A. Majcen Le Marechal, Methods of decoloration of textile wastewaters, Dyes Pigm., 37(1998), No. 4, p. 335.
|
O. Legrini, E. Oliveros, and A.M. Braun, Photochemical processes for water treatment, Chem. Rev., 93(1993), No. 2, p. 671.
|
H.T. Gao, Y.Y. Liu, C.H. Ding, D.M. Dai, and G.J. Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 606.
|
R. Yang, J.H. Liu, and S.M. Li, Preparation and characterization of in-site regenerated TiO2-ACFs photocatalyst, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 357.
|
S.H. Xun, Z.Y. Zhang, T.Y. Wang, D.L. Jiang, and H.M. Li, Synthesis of novel metal nanoparticles/SnNb2O6 nanosheets plasmonic nanocomposite photocatalysts with enhanced visible-light photocatalytic activity and mechanism insight, J. Alloys Compd., 685(2016), p. 647.
|
S. Ahluwalia, N.T. Prakash, R. Prakash, and B. Pal, Improved degradation of methyl orange dye using bio-co-atalyst Se nanoparticles impregnated ZnS phtocatalyst under UV irradiation, Chem. Eng. J., 306(2016), p. 1041.
|
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), No. 5358, p. 37.
|
A. Mills and S.K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol. A, 152(2002), No. 1-3, p. 233.
|
P.V. Kamat, Meeting the clean energy demand:Nanostructure architectures for solar energy conversion, J. Phys. Chem. C, 111(2007), No. 7, p. 2834.
|
V. Etacheri, M.K. Saery, S.J. Hinder, and S.C. Pillai, Oxygen rich titania:A dopant free, high temperature stable and visible light active anatase photocatalyst, Adv. Funct. Mater., 21(2011), No. 19, p. 3744.
|
A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas, P. Paul, and B. Adhikary, Synthesis of FeS and FeSe nanoparticles from a single source precursor:a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2, ACS Appl. Mater. Interfaces, 4(2012), No. 4, p. 1919.
|
S.K. Maji, A.K. Dutta, P. Biswas, D.N. Srivastava, D.N. Srivastava, P. Paul, A. Mondala, and B. Adhikary, Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic peroxidase behavior, Appl. Catal. B, 419-420(2012), p. 170.
|
E.J. Kim, J.H. Kim, A.M. Azad, and Y.S. Chang, Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications, ACS Appl. Mater. Interfaces, 3(2011), No. 5, p. 1457.
|
M. Harir, A. Gaspar, B. Kanawati, A. Fekete, M. Frommberger, D. Martens, A. Kettrup, M. El Azzouzi, and Ph. Schmitt-Kopplin, Photocatalytic reactions of imazamox at TiO2, H2O2, and TiO2/H2O2 in water interfaces:kinetic and photoproducts study, Appl. Catal. B, 84(2008), No. 3-4, p. 524.
|
G.N. Nomikos and P. Panagiotopoulou, Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst, Appl. Catal. B, 146(2014), p. 249.
|
H. Feng, P.Z. Si, X.F. Xiao, C.H. Jin, S.J. Yu, Z.F. Li, and H.L. Ge, Large scale synthesis of FeS coated Fe nanoparticles as reusable magnetic photocatalysts, Front. Mater. Sci., 7(2013), No. 3, p. 308.
|
H. Esmaili, S. Sheibani, and F. Rashchi, Synthesis of nano-structured Fe/FeS powder and photocatalytic activity under visible light irradiation,[in] Proceedings of the 5th International Conference on Materials Engineering and Metallurgy, Shiraz, 2016, p. 235.
|
A. Kotobi, H. Esmaili, and S. Sheibani, Fe/FeS core/shell nano-particles preparation by thermal method,[in] Proceedings of the 5th International Conference on Materials Engineering and Metallurgy, Shiraz, 2016, p. 120.
|
B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd Ed., Prentice Hall, Upper Saddle River, NJ, 2001, p. 99.
|
B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd Ed., Wiley-IEEE Press, New York, 2008, p. 531.
|
L. Sagnotti and Iron sulfides, Encyclopedia of Geomagnetism and Paleomagnetism, Edited by D. Gubbins and E. Herrero-Bervera, Springer, The Netherlands, 2007, p. 454.
|
B.S. Avinash, V.S. Chaturmukha, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, B.M. Harish, S. Suresh, and A.R. Lamani, Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial, AIP Conf. Proc., 1728(2016), No. 1, art. No. 020426.
|
H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B, 39(2002), No. 1, p. 75.
|
X.Y. Li, C.G. Hu, X. Wang, and Y. Xi, Photocatalytic activity of CdS nanoparticles synthesized by a facile composite molten salt method, Appl. Surf. Sci., 258(2012), No. 10, p. 4370.
|
H.L. Zhang and C.G. Hu, Effective solar absorption and radial microchannels of SnO2 hierarchical structure for high photocatalytic activity, Catal. Commun., 14(2011), No. 1, p. 32.
|
Y. Tak, H. Kim, D. Lee, and K. Yong, Type-Ⅱ CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process:enhanced photocatalytic activity, Chem. Commun., 2008, No. 38, p. 4585.
|
N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, and M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58(2007), No. 1, p. 91.
|
S. Chakrabarti and B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112(2004), No. 3, p. 269.
|
C. Martinez, M. Canle L, M.I. Fernández, J.A. Santaballa, and J. Faria, Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal. B, 102(2011), No. 3-4, p. 563.
|
A.M. Tayeb and D.S. Hussein, Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue, Am. J. Nanomater., 3(2015), No. 2, p. 57.
|
S. Mustafa, D. Misbahud, Y.H. Sammad, M.I. Zaman, and K. Sadullah, Sorption mechanism of cadmium from aqueous solution on iron sulphide, Chin. J. Chem., 28(2010), No. 7, p. 1153.
|
C. Guillard, H. Lechheb, A. Houas, M. Ksibi, E. Elaloui, and J.M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol. A, 158(2003), No. 1, p. 27.
|
M.A. Fox and M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93(1993), No. 1, p. 341.
|
S. Sheibani, S. Heshmati-Manesh, and A. Ataie, Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta Mater., 58(2010), No. 20, p. 6828.
|
[1] | C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, C. A. Rodríguez-González. Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1467-1476. DOI: 10.1007/s12613-019-1863-0 |
[2] | Shuang Huang, Hua-lan Xu, Sheng-liang Zhong, Lei Wang. Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(7): 794-803. DOI: 10.1007/s12613-017-1463-9 |
[3] | Deepak Pathania, Rishu Katwal, Harpreet Kaur. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(3): 358-371. DOI: 10.1007/s12613-016-1245-9 |
[4] | U. K. N. Din, T. H. T. Aziz, M. M. Salleh, A. A. Umar. Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(1): 109-115. DOI: 10.1007/s12613-016-1217-0 |
[5] | Zhi-guo Liu, Ti-chang Sun, Xiao-ping Wang, En-xia Gao. Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(9): 901-906. DOI: 10.1007/s12613-015-1148-1 |
[6] | S. E. Mousavi Ghahfarokhi, S. Hosseini, M. Zargar Shoushtari. Fabrication of SrFe12-xNixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 876-883. DOI: 10.1007/s12613-015-1145-4 |
[7] | Yang Li, Yi Yue, Zai-qing Que, Mei Zhang, Min Guo. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 1012-1020. DOI: 10.1007/s12613-013-0828-y |
[8] | Zahra Hejri, Ali Akbar Seifkordi, Ali Ahmadpour, Seyed Mojtaba Zebarjad, Abdolmajid Maskooki. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 1001-1011. DOI: 10.1007/s12613-013-0827-z |
[9] | Majid Darroudi, Mansor B. Ahmad, Mohammad Hakimi, Reza Zamiri, Ali Khorsand Zak, Hasan Ali Hosseini, Mohsen Zargar. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(4): 403-409. DOI: 10.1007/s12613-013-0743-2 |
[10] | Hong-tao Gao, Jing Zhou, Dong-mei Dai, Guang-jun Liu. Preparation, characterization and photocatalytic activity of N-doped TiO2 nanocrystals [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 701-706. DOI: 10.1016/S1674-4799(10)60016-7 |
1. | Dost Muhammad, Syed Hatim Shah, Samira Elaissi, et al. Facile synthesis of FeS@MoS2 nanocomposite material: an advantageous electrode for high-performance supercapacitor. Ionics, 2025. DOI:10.1007/s11581-025-06244-x |
2. | Harez Rashid Ahmed, Kawan F. Kayani. A comparative review of Fenton-like processes and advanced oxidation processes for Methylene Blue degradation. Inorganic Chemistry Communications, 2024, 170: 113467. DOI:10.1016/j.inoche.2024.113467 |
3. | Zhaoning Yang, Xiaoxin Shu, Di Guo, et al. Progress in the research on organic piezoelectric catalysts for dye decomposition. International Journal of Minerals, Metallurgy and Materials, 2024, 31(2): 245. DOI:10.1007/s12613-023-2773-8 |
4. | Lal Lianmawii, K. Birla Singh, N. Rajmuhon Singh, et al. A review: photocatalytic degradation of dyes by metal sulfide nanoparticles. Brazilian Journal of Chemical Engineering, 2024, 42(1): 1. DOI:10.1007/s43153-023-00425-9 |
5. | Yan Xu, Bi Lepohi Guy Laurent Zanli, Jiawei Chen. New consideration on the application of nano-zero-valent iron (nZVI) in groundwater remediation: refractions to existing technologies. Journal of Nanoparticle Research, 2024, 26(1) DOI:10.1007/s11051-023-05919-8 |
6. | Khadim Hussain, Amarjeet Dahiya, Akanksha Bhardwaj, et al. Fuller’s Earth–immobilized FeS nanoparticles for efficient adsorption of crystal violet in aqueous solution. Journal of Nanoparticle Research, 2024, 26(9) DOI:10.1007/s11051-024-06128-7 |
7. | Evangeline Linda, Aruna-Devi Rasu Chettiar, Valentina Sneha George, et al. Exploring the physical properties of pristine γ-In2S3 and its influence on Ba doping for photocatalytic degradation of 2, 4-D herbicide. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 456: 115831. DOI:10.1016/j.jphotochem.2024.115831 |
8. | Piotr Zawadzki. Persulfates to degrade a mixture of dyes (rhodamine B, methylene blue) in the presence of glucose and visible light. Desalination and Water Treatment, 2023, 284: 278. DOI:10.5004/dwt.2023.29288 |
9. | Manasai Arunkumar, Arputharaj Samson Nesaraj, Clementz Edwardraj Freeda Christy, et al. Improved photocatalytic efficiency of MAl2O4 @ activated carbon based nanocomposites in removing malachite green dye under visible light. Nanotechnology for Environmental Engineering, 2023, 8(3): 643. DOI:10.1007/s41204-022-00300-x |
10. | M Burhanuz Zaman, Vipin Shrotriya, Amzad Hossain, et al. Non hydrazine based chemical synthesis of earth abundant Cu2SnS3 thin film photocatalyst for wastewater treatment. Ceramics International, 2023, 49(12): 20822. DOI:10.1016/j.ceramint.2023.03.215 |
11. | Wanjia Zhang, Xu Jiang, John Ralston, et al. Efficient heterogeneous photodegradation of Eosin Y by oxidized pyrite using the photo-Fenton process. Minerals Engineering, 2023, 191: 107972. DOI:10.1016/j.mineng.2022.107972 |
12. | Yang Xue, Xiaoming Liu, Na Zhang, et al. Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism. International Journal of Minerals, Metallurgy and Materials, 2023, 30(12): 2364. DOI:10.1007/s12613-023-2723-5 |
13. | Fahimeh Ansari, Saeed Sheibani, Marcos Fernández-García. A response surface methodology optimization for efficient photocatalytic degradation over reusable CuxO/TiO2 nanocomposite on copper wire. Materials Research Bulletin, 2023, 166: 112342. DOI:10.1016/j.materresbull.2023.112342 |
14. | Manasai Arunkumar, Arputharaj Samson Nesaraj. Facile chemical fabrication of Ni doped CoAl2O4 nano-spinel photocatalysts: Physico-chemical properties and photodegradation of toxic malachite green dye under visible light. International Journal of Environmental Analytical Chemistry, 2023, 103(5): 1086. DOI:10.1080/03067319.2020.1867722 |
15. | Shubin Zhang, Tianxiao Wang, Xin Guo, et al. Adsorption and reduction of trichloroethylene by sulfidated nanoscale zerovalent iron (S-nZVI) supported by Mg(OH)2. Environmental Science and Pollution Research, 2022, 30(6): 14240. DOI:10.1007/s11356-022-23195-2 |
16. | M. Kamali, S. Sheibani, A. Ataie. Effect of calcination temperature on photocatalytic activity of magnetic Fe-based composites recycled from hazardous EAF dust. Materials Research Bulletin, 2022, 148: 111688. DOI:10.1016/j.materresbull.2021.111688 |
17. | Piotr Zawadzki. Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. Water, Air, & Soil Pollution, 2022, 233(9) DOI:10.1007/s11270-022-05831-2 |
18. | E. Alimohammadi, S. Sheibani, A. Ataie. Preparation, magnetic and photocatalytic properties of nano-structured SrFe12O19 obtained via an optimized mechano-thermal route using celestite ore. Materials Chemistry and Physics, 2022, 275: 125312. DOI:10.1016/j.matchemphys.2021.125312 |
19. | Chuanzhi Jiang, Chengyue Yang, Yong Fu, et al. High-efficiency Hg(II) adsorbent: FeS loaded on a carbon black from pyrolysis of waste tires and sequential reutilization as a photocatalyst. Environmental Science and Pollution Research, 2022, 29(56): 84287. DOI:10.1007/s11356-022-21572-5 |
20. | Chunyan Yang, Ziwei Xue, Hao Yin, et al. Aqueous foam loaded TiO2 nano-catalysts for promoting photodegradation of methylene blue. Journal of Nanoparticle Research, 2022, 24(3) DOI:10.1007/s11051-022-05441-3 |
21. | Vaitheeswari Balakrishnan, Kalaiyarasu Thangaraj, Mariyappan Palani, et al. Green synthesis of copper oxide nanoparticles using Euphorbia hirta leaves extract and its biological applications. Inorganic and Nano-Metal Chemistry, 2022, 52(6): 809. DOI:10.1080/24701556.2021.1952260 |
22. | Pandi Kalimuthu, Youjin Kim, Muthu Prabhu Subbaiahc, et al. Novel Magnetic Fe@Nsc Nanohybrid Material for Arsenic Removal from Aqueous Media. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4055908 |
23. | Pandi Kalimuthu, Youjin Kim, Muthu Prabhu Subbaiah, et al. Novel magnetic Fe@NSC nanohybrid material for arsenic removal from aqueous media. Chemosphere, 2022, 308: 136450. DOI:10.1016/j.chemosphere.2022.136450 |
24. | Siavash BAKHTIARNIA, Saeed SHEIBANI, Alain BILLARD, et al. Deposition of nanoporous BiVO4 thin-film photocatalyst by reactive magnetron sputtering: Effect of total pressure and substrate. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 957. DOI:10.1016/S1003-6326(22)65846-1 |
25. | Hai-xia Liu, Meng-yuan Teng, Xu-guang Wei, et al. Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance. International Journal of Minerals, Metallurgy and Materials, 2021, 28(3): 495. DOI:10.1007/s12613-020-2033-0 |
26. | Juan Wang, Li-jun Yang, Xiao-chong Zhao, et al. Highly efficient nanocatalyst Ni1Co9@graphene for hydrolytic dehydrogenation of sodium borohydride. International Journal of Minerals, Metallurgy and Materials, 2021, 28(12): 1976. DOI:10.1007/s12613-020-2090-4 |
27. | Mohammad Nami, Amirhossein Rakhsha, Saeed Sheibani, et al. The enhanced photocatalytic activity of ZnO nanorods/CuO nanourchins composite prepared by chemical bath precipitation. Materials Science and Engineering: B, 2021, 271: 115262. DOI:10.1016/j.mseb.2021.115262 |
28. | Amirreza Dana, Saeed Sheibani. CNTs-copper oxide nanocomposite photocatalyst with high visible light degradation efficiency. Advanced Powder Technology, 2021, 32(10): 3760. DOI:10.1016/j.apt.2021.08.023 |
29. | Rui-qi Yang, Na Liang, Xuan-yu Chen, et al. Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 150. DOI:10.1007/s12613-020-2131-z |
30. | Xiaohui Ma, Chaojun Ren, Hongda Li, et al. A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. Journal of Colloid and Interface Science, 2021, 582: 488. DOI:10.1016/j.jcis.2020.08.083 |
31. | M. Kamali, S. Sheibani, A. Ataie. Magnetic MgFe2O4–CaFe2O4 S-scheme photocatalyst prepared from recycling of electric arc furnace dust. Journal of Environmental Management, 2021, 290: 112609. DOI:10.1016/j.jenvman.2021.112609 |
32. | Siavash Bakhtiarnia, Saeed Sheibani, Alain Billard, et al. Enhanced photocatalytic activity of sputter-deposited nanoporous BiVO4 thin films by controlling film thickness. Journal of Alloys and Compounds, 2021, 879: 160463. DOI:10.1016/j.jallcom.2021.160463 |
33. | Naveen Chandra Joshi, Ankita Gaur, Ajay Singh. Synthesis, Characterisations, Adsorptive Performances and Photo-catalytic Activity of Fe3O4-SiO2 Based Nanosorbent (Fe3O4-SiO2 BN). Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(11): 4416. DOI:10.1007/s10904-020-01622-6 |
34. | David O’Connor, Deyi Hou, Qingsong Liu, et al. Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15791. DOI:10.1021/acssuschemeng.0c03401 |
35. | Ying-zhi Chen, Dong-jian Jiang, Zheng-qi Gong, et al. Anodized metal oxide nanostructures for photoelectrochemical water splitting. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 584. DOI:10.1007/s12613-020-1983-6 |
36. | Ehab A. Abdelrahman, R. M. Hegazey, Ahmed Alharbi. Facile Synthesis of Mordenite Nanoparticles for Efficient Removal of Pb(II) Ions from Aqueous Media. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(4): 1369. DOI:10.1007/s10904-019-01238-5 |
37. | Abolfazl Azarniya, Mohammad Soltaninejad, Mahdi Zekavat, et al. Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organic pollutants from water: Influencing factors and kinetic study. Materials Chemistry and Physics, 2020, 256: 123740. DOI:10.1016/j.matchemphys.2020.123740 |
38. | Huan-huan Wang, Wen-xiu Liu, Jing Ma, et al. Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 830. DOI:10.1007/s12613-019-1923-5 |
39. | Ehab A. Abdelrahman, R.M. Hegazey, Yousra H. Kotp, et al. Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117195. DOI:10.1016/j.saa.2019.117195 |
40. | A. Shafei, S. Sheibani. Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol–gel method. Materials Research Bulletin, 2019, 110: 198. DOI:10.1016/j.materresbull.2018.10.035 |
41. | Fahimeh Ansari, Saeed Sheibani, Marcos Fernández-García. Characterization and performance of Cu2O nanostructures on Cu wire photocatalyst synthesized in-situ by chemical and thermal oxidation. Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13675. DOI:10.1007/s10854-019-01745-8 |
42. | Sneha Yadav, P. Jijoe Samuel, Tenzin Thinley, et al. Metal Sulfide Nanomaterials for Environmental Applications. DOI:10.1016/B978-0-443-13464-7.00001-3 |
43. | Khotso Khoele, Onoyivwe Monday Ama, Ikenna Chibuzor Emeji, et al. Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials, DOI:10.1007/978-3-030-43346-8_1 |