Xiao-ping Wang, Ti-chang Sun, Chao Chen, and Jue Kou, Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp.383-390. https://dx.doi.org/10.1007/s12613-018-1582-y
Cite this article as: Xiao-ping Wang, Ti-chang Sun, Chao Chen, and Jue Kou, Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp.383-390. https://dx.doi.org/10.1007/s12613-018-1582-y

Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore

  • This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return