Cite this article as: |
Babak Shahriari, Reza Vafaei, Ehsan Mohammad Sharifi, and Khosro Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., 25(2018), No. 4, pp. 429-438. https://doi.org/10.1007/s12613-018-1588-5 |
Ehsan Mohammad Sharifi E-mail: ehsan_sharifi_2000@yahoo.com
[1] |
A. Saha, J. Jung, and G.B. Olson, Prototype evaluation of transformation toughened blast resistant naval hull steels:Part Ⅱ, J. Comput. Aided Mater. Des., 14(2007), No. 2, p. 201.
|
[2] |
Y. Nie, C.J. Shang, X. Song, Y. You, C. Li, and X.L. He, Properties and homogeneity of 550-MPa grade TMCP steel for ship hull, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 179.
|
[3] |
A.N. Chiaramonti, J.W. Sowards, D.K. Schreiber, and J.R. Fekete, Understanding the high-temperature mechanical properties of A710(HSLA-80) steel with use of complementary atom probe tomography and electron microscopy, Microsc. Microanal., 20(2014), Suppl. 3, p. 954.
|
[4] |
G.H. Majzoobi, A.H. Mahmoudi, and S. Moradi, Ductile to brittle failure transition of HSLA-100 steel at high strain rates and subzero temperatures, Eng. Fract. Mech., 158(2016), p. 179.
|
[5] |
M.D. Mulholland and D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Mater., 59(2011), No. 5, p. 1881.
|
[6] |
F. Khodabakhshi and M. Kazeminezhad, Differential scanning calorimetry study of constrained groove pressed low carbon steel:recovery, recrystallisation and ferrite to austenite phase transformation, Mater. Sci. Technol., 30(2014), No. 7, p. 765.
|
[7] |
Z.B. Han, J.H. Liu, Y. He, K.W. Li, Y.L. Ji, and J. Liu, Determination of the liquidus and solidus temperatures of FeCrAl stainless steel, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1141.
|
[8] |
E. Wielgosz and T. Kargul, Differential scanning calorimetry study of peritectic steel grades, J. Therm. Anal. Calorim., 119(2015), No. 3, p. 1547.
|
[9] |
L. Ren, L. Nan, and K. Yang, Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Mater. Des., 32(2011), No. 4, p. 2374.
|
[10] |
N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels, Mater. Trans., JIM, 40(1999), No. 4, p. 268.
|
[11] |
R.L. Blaine and H.E. Kissinger, Homer kissinger and the kissinger equation, Thermochim. Acta, 540(2012), p. 1.
|
[12] |
M.J. Starink, The determination of activation energy from linear heating rate experiments:a comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404(2003), No. 1-2, p. 163.
|
[13] |
R. Monzen, M. Iguchi, and M.L. Jenkins, Structural changes of 9R copper precipitates in an aged Fe-Cu alloy, Philos. Mag. Lett., 80(2000), No. 3, p. 137.
|
[14] |
R. Monzen, M.L. Jenkins, and A.P. Sutton, The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy, Philos. Mag. A, 80(2000), No. 3, p. 711.
|
[15] |
T.H. Lee, Y.O. Kim, and S.J. Kim, Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel, Philos. Mag., 87(2007), No. 2, p. 209.
|
[16] |
G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, and R.D.K. Misra, Evolution of crystal structure of Cu precipitates in a low carbon steel, Mater. Des., 135(2017), p. 92.
|
[17] |
H.R. Habibi, Atomic structure of the Cu precipitates in two stages hardening in maraging steel, Mater. Lett., 59(2005), No. 14-15, p. 1824.
|
[18] |
J. Wang, H. Zou, C. Li, Y.H. Peng, S.Y. Qiu, and B.L. Shen, The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350℃, Nucl. Eng. Des., 236(2006), No. 24, p. 2531.
|
[19] |
S.W. Thompson, Microstructural characterization of an as-quenched HSLA-100 plate steel via transmission electron microscopy, Mater. Charact., 77(2013), p. 89.
|
[20] |
T.J. Headley and J.A. Brooks, A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels, Metall. Mater. Trans. A, 33(2002), No. 1, p. 5.
|
[21] |
A. Saha and G.B. Olson, Computer-aided design of transformation toughened blast resistant naval hull steels:Part I, J. Comput. Aided Mater. Des., 14(2007), No. 2, p. 177.
|
[22] |
S.S.G. Banadkouki, D. Yu, and D.P. Dunne, Age hardening in a Cu-bearing high strength low alloy steel, ISIJ Int., 36(1996), No. 1, p. 61.
|
[23] |
B. Hwang, C.G. Lee, and T.H. Lee, Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. A, 41(2009), No. 1, p. 85.
|
[24] |
M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo, HSLA-100 steels:Influence of aging heat treatment on microstructure and properties, J. Mater. Eng. Perform., 7(1998), No. 2, p. 247.
|
[25] |
S. Panwar, D.B. Goel, O.P. Pandey, and K.S. Prasad, Aging of a copper bearing HSLA-100 steel, Bull. Mater. Sci., 26(2003), No. 4, p. 441.
|
[26] |
A.N. Bhagat, S.K. Pabi, S. Ranganathan, and O.N. Mohanty, Aging behaviour in copper bearing high strength low alloy steels, ISIJ Int., 44(2004), No. 1, p. 115.
|
[27] |
R. Hamano, The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel, Metall. Trans. A, 24(1993), No. 1, p. 127.
|
[28] |
L. Skoufari-Themistou, D.N. Crowther, and B. Mintz, Strength and impact behaviour of age hardenable copper containing steels, Mater. Sci. Technol., 15(1999), No. 9, p. 1069.
|
[29] |
NAVSEA Thechnical Publication, Base Materials for Critical Applications:Requirements for Low Aalloy Steel Plate, Forgings, Castings, Shapes, Bars, and Heads of HY-80/100/130 and HSLA-80/100, T9074-BD-GIB-010/0300(REV. 2), 2012.
|
[30] |
W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303.
|
[31] |
D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman, An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels, Scripta Mater., 55(2006), No. 1, p. 35.
|
[32] |
P.K. Ray, R.I. Ganguly, and A.K. Panda, Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables, Mater. Sci. Eng. A, 346(2003), No.1-2, p. 122.
|
[33] |
J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, and Q. Zhan, Coherent precipitation of copper in Super304H austenite steel, Mater. Sci. Eng. A, 584(2013), p. 57.
|