Cite this article as: |
Davood Rahmatabadi, Moslem Tayyebi, Ramin Hashemi, and Ghader Faraji, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp. 564-572. https://doi.org/10.1007/s12613-018-1603-x |
Ramin Hashemi E-mail: rhashemi@iust.ac.ir
[1] |
F.A. Marandi, A.H. Jabbari, M. Sedighi, and R. Hashemi, An Experimental, analytical, and numerical investigation of hydraulic bulge test in two-layer Al–Cu Sheets, J. Manuf. Sci. Eng., 139(2017), No. 3, article No. 031005.
|
[2] |
M.H. Vini, M. Sedighi, and M. Mondali, Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB), Int. J. Mater. Res., 108(2017), No. 1, p. 53.
|
[3] |
H. Rahimi, M. Sedighi, and R. Hashemi, Forming limit diagrams of fine-grained Al 5083 produced by equal channel angular rolling process, [in] Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016. https://doi.org/10.1177/1464420716655560.
|
[4] |
M. Alizadeh and M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Des., 56(2014), p. 680.
|
[5] |
K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Mater. Sci. Eng. A, 527(2010), No. 13-14, p. 3073.
|
[6] |
P. Asadi, G. Faraji, and M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol., 51(2010), No. 1-4, p. 247.
|
[7] |
G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1583.
|
[8] |
R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2000), No. 2, p. 103.
|
[9] |
R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881.
|
[10] |
R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, 137(1991), p. 35.
|
[11] |
A. Azimi, S. Tutunchilar, G. Faraji, and M. B. Givi, Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy, Mater. Des., 42(2012), p. 388.
|
[12] |
G. Sakai, Z. Horita, and T. G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 393(2004), No. 1-2, p. 344.
|
[13] |
A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.
|
[14] |
Z.J. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy, J. Mater. Res., 11(1996), No. 8, p. 1880.
|
[15] |
J.G. Yin, J. Lu, H.T. Ma, and P.S. Zhang, Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature, J. Mater. Sci., 39(2004), No. 8, p. 2851.
|
[16] |
A. Babaei, G. Faraji, M.M. Mashhadi, and M. Hamdi, Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method, Mater. Sci. Eng. A, 558(2012), p. 150.
|
[17] |
G. Faraji, K. Abrinia, M.M. Mashhadi, and M. Hamdi, An upper-bound analysis for frictionless TCAP process, Arch. Appl. Mech., 83(2013), No. 4, p. 483.
|
[18] |
G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2001), No. 19-20, p. 3009.
|
[19] |
M. Richert, H. Stüwe, J. Richert, R. Pippan, and C. Motz, Characteristic features of microstructure of AlMg5 deformed to large plastic strains, Mater. Sci. Eng. A, 301(2001), No. 2,p. 237.
|
[20] |
J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminum, 62(1986), No. 8, p. 604.
|
[21] |
Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579.
|
[22] |
Y. Saito, R.G. Hong, N. Tsuji, H. Utsunomiya, and T. Sakai, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., 39(1998), No. 9, p. 1221.
|
[23] |
H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 132.
|
[24] |
M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi, and K. Janghorban, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Compos. Sci. Technol., 68(2008), No. 9, p. 2003.
|
[25] |
R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process, Mater. Sci. Eng. A, 530(2011), p. 63.
|
[26] |
H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature, Mater. Sci. Eng. A, 543(2012), p. 249.
|
[27] |
A. Mozaffari, H.D. Manesh, and K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, J. Alloys Compd., 489(2010), No. 1, p. 103.
|
[28] |
M. Tayyebi and B. Eghbali, Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 559(2013), p. 759.
|
[29] |
H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.W. Hppel, and M. Gken, Asymmetric accumulative roll bonding of aluminium-titanium composite sheets, Mater. Sci. Eng. A, 576(2013), p. 306.
|
[30] |
P.D. Motevalli and B. Eghbali, Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 628(2015), p. 135.
|
[31] |
M.M. Mahdavian, L. Ghalandari, and M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Mater. Sci. Eng. A, 579(2013), p. 99.
|
[32] |
R. Zhang and V.L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463(2007), No. 1-2, p. 67.
|
[33] |
A. Shabani, M.R. Toroghinejad, and A. Shafyei, Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties, Mater. Sci. Eng. A, 558(2012), p. 386.
|
[34] |
G. Min, J.M. Lee, S.B. Kang, and H.W. Kim, Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process, Mater. Lett., 60(2006), No. 27, p. 3255.
|
[35] |
D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process, Mater. Sci. Eng. A, 708(2017), p. 301.
|
[36] |
A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals Ⅲ: Fracture and fatigue of nanostructured metallic materials, Acta Mater., 107(2016), p. 508.
|
[37] |
Z.P. Xing, S.B. Kang, and H.W. Kim, Structure and properties of AA3003 alloy produced by accumulative roll bonding process, J. Mater. Sci., 37(2002), No. 4, p. 717.
|
[38] |
N. Hansen, X. Huang, R. Ueji, and N. Tsuji, Structure and strength after large strain deformation, Mater. Sci. Eng. A, 387-389(2004), p. 191.
|
[39] |
D. Rahmatabadi and R. Hashemi, Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding, Int. J. Mater. Res., 108(2017), No.12, p. 1036.
|
[40] |
H. Abdolvand, G. Faraji, M.K.B. Givi, R. Hashemi, and M. Riazat, Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation, Met. Mater. Int., 21(2015), No. 6, p. 1068.
|
[41] |
G. Faraji, M.M. Mashhadi, A.R. Bushroa, and A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process, Mater. Sci. Eng. A, 563(2013), p. 193.
|
[42] |
V.Y. Mehr, A. Rezaeian, and M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Mater. Des., 70(2015), p. 53.
|
[43] |
M. Sedighi, M.H. Vini, and P. Farhadipour, Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding, Powder Metall. Met. Ceram., 55(2016), No. 7-8, p. 413.
|
[44] |
V.Y. Mehr, M.R. Toroghinejad, and A. Rezaeian, Mechanical properties and microstructure evolutions of multilayered Al Cu composites produced by accumulative roll bonding process and subsequent annealing, Mater. Sci. Eng. A, 601(2014), p. 40.
|