Davood Rahmatabadi, Moslem Tayyebi, Ramin Hashemi, and Ghader Faraji, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp.564-572. https://dx.doi.org/10.1007/s12613-018-1603-x
Cite this article as: Davood Rahmatabadi, Moslem Tayyebi, Ramin Hashemi, and Ghader Faraji, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp.564-572. https://dx.doi.org/10.1007/s12613-018-1603-x
Research Article

Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

Author Affilications
  • In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
  • F.A. Marandi, A.H. Jabbari, M. Sedighi, and R. Hashemi, An Experimental, analytical, and numerical investigation of hydraulic bulge test in two-layer Al–Cu Sheets, J. Manuf. Sci. Eng., 139(2017), No. 3, article No. 031005.
    M.H. Vini, M. Sedighi, and M. Mondali, Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB), Int. J. Mater. Res., 108(2017), No. 1, p. 53.
    H. Rahimi, M. Sedighi, and R. Hashemi, Forming limit diagrams of fine-grained Al 5083 produced by equal channel angular rolling process, [in] Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016. https://doi.org/10.1177/1464420716655560.
    M. Alizadeh and M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Des., 56(2014), p. 680.
    K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Mater. Sci. Eng. A, 527(2010), No. 13-14, p. 3073.
    P. Asadi, G. Faraji, and M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol., 51(2010), No. 1-4, p. 247.
    G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1583.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2000), No. 2, p. 103.
    R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881.
    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, 137(1991), p. 35.
    A. Azimi, S. Tutunchilar, G. Faraji, and M. B. Givi, Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy, Mater. Des., 42(2012), p. 388.
    G. Sakai, Z. Horita, and T. G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 393(2004), No. 1-2, p. 344.
    A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.
    Z.J. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy, J. Mater. Res., 11(1996), No. 8, p. 1880.
    J.G. Yin, J. Lu, H.T. Ma, and P.S. Zhang, Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature, J. Mater. Sci., 39(2004), No. 8, p. 2851.
    A. Babaei, G. Faraji, M.M. Mashhadi, and M. Hamdi, Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method, Mater. Sci. Eng. A, 558(2012), p. 150.
    G. Faraji, K. Abrinia, M.M. Mashhadi, and M. Hamdi, An upper-bound analysis for frictionless TCAP process, Arch. Appl. Mech., 83(2013), No. 4, p. 483.
    G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2001), No. 19-20, p. 3009.
    M. Richert, H. Stüwe, J. Richert, R. Pippan, and C. Motz, Characteristic features of microstructure of AlMg5 deformed to large plastic strains, Mater. Sci. Eng. A, 301(2001), No. 2,p. 237.
    J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminum, 62(1986), No. 8, p. 604.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579.
    Y. Saito, R.G. Hong, N. Tsuji, H. Utsunomiya, and T. Sakai, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., 39(1998), No. 9, p. 1221.
    H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 132.
    M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi, and K. Janghorban, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Compos. Sci. Technol., 68(2008), No. 9, p. 2003.
    R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process, Mater. Sci. Eng. A, 530(2011), p. 63.
    H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature, Mater. Sci. Eng. A, 543(2012), p. 249.
    A. Mozaffari, H.D. Manesh, and K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, J. Alloys Compd., 489(2010), No. 1, p. 103.
    M. Tayyebi and B. Eghbali, Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 559(2013), p. 759.
    H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.W. Hppel, and M. Gken, Asymmetric accumulative roll bonding of aluminium-titanium composite sheets, Mater. Sci. Eng. A, 576(2013), p. 306.
    P.D. Motevalli and B. Eghbali, Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 628(2015), p. 135.
    M.M. Mahdavian, L. Ghalandari, and M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Mater. Sci. Eng. A, 579(2013), p. 99.
    R. Zhang and V.L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463(2007), No. 1-2, p. 67.
    A. Shabani, M.R. Toroghinejad, and A. Shafyei, Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties, Mater. Sci. Eng. A, 558(2012), p. 386.
    G. Min, J.M. Lee, S.B. Kang, and H.W. Kim, Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process, Mater. Lett., 60(2006), No. 27, p. 3255.
    D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process, Mater. Sci. Eng. A, 708(2017), p. 301.
    A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals Ⅲ: Fracture and fatigue of nanostructured metallic materials, Acta Mater., 107(2016), p. 508.
    Z.P. Xing, S.B. Kang, and H.W. Kim, Structure and properties of AA3003 alloy produced by accumulative roll bonding process, J. Mater. Sci., 37(2002), No. 4, p. 717.
    N. Hansen, X. Huang, R. Ueji, and N. Tsuji, Structure and strength after large strain deformation, Mater. Sci. Eng. A, 387-389(2004), p. 191.
    D. Rahmatabadi and R. Hashemi, Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding, Int. J. Mater. Res., 108(2017), No.12, p. 1036.
    H. Abdolvand, G. Faraji, M.K.B. Givi, R. Hashemi, and M. Riazat, Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation, Met. Mater. Int., 21(2015), No. 6, p. 1068.
    G. Faraji, M.M. Mashhadi, A.R. Bushroa, and A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process, Mater. Sci. Eng. A, 563(2013), p. 193.
    V.Y. Mehr, A. Rezaeian, and M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Mater. Des., 70(2015), p. 53.
    M. Sedighi, M.H. Vini, and P. Farhadipour, Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding, Powder Metall. Met. Ceram., 55(2016), No. 7-8, p. 413.
    V.Y. Mehr, M.R. Toroghinejad, and A. Rezaeian, Mechanical properties and microstructure evolutions of multilayered Al Cu composites produced by accumulative roll bonding process and subsequent annealing, Mater. Sci. Eng. A, 601(2014), p. 40.
  • Related Articles

    [1]Li Lin, Bao-shun Li, Guo-ming Zhu, Yong-lin Kang, Ren-dong Liu. Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(10): 1181-1190. DOI: 10.1007/s12613-018-1670-z
    [2]Moslem Tayyebi, Beitallah Eghbali. Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 357-364. DOI: 10.1007/s12613-018-1579-6
    [3]J. Kubásek, D. Vojtěch, I. Pospíšilová, A. Michalcová, J. Maixner. Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1167-1176. DOI: 10.1007/s12613-016-1336-7
    [4]Ahmad Zare, S. R. Hosseini. Influence of soaking time in deep cryogenic treatment on the microstructure and mechanical properties of low-alloy medium-carbon HY-TUF steel [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(6): 658-666. DOI: 10.1007/s12613-016-1278-0
    [5]Le-yu Zhou, Dan Zhang, Ya-zheng Liu. Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(8): 755-765. DOI: 10.1007/s12613-014-0968-8
    [6]Gui-rong Li, Hong-ming Wang, Yun Cai, Yu-tao Zhao, Jun-jie Wang, Simon P. A. Gill. Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatments [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(9): 896-901. DOI: 10.1007/s12613-013-0812-6
    [7]Ya-jie Chu, Jian Chen, Xiao-quan Li, Shen-qing Wu, Zong-hui Yang. Effects of thermomechanical treatments on the microstructures and mechanical properties of GTA-welded AZ31B magnesium alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(10): 945-950. DOI: 10.1007/s12613-012-0652-9
    [8]Haitao Jiang, Hubin Wu, Di Tang, Qiang Liu. Influence of isothermal bainitic processing on the mechanical properties and microstructure characterization of TRIP steel [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(5): 574-579. DOI: 10.1016/S1005-8850(08)60107-3
    [9]Jinna Mei, Jinshan Li, Hongchao Kou, Rui Hu, Hengzhi Fu, Lian Zhou. Effects of Ta addition on the microstructure and mechanical properties of Ti40Zr25Ni8Cu9Be18 amorphous alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(S1): 31-35. DOI: 10.1016/S1005-8850(07)60103-0
    [10]Yinghui Zhang, Yanli Ma, Yonglin Kang, Hao Yu. Mechanical properties and microstructure of TRIP steels produced using TSCR process [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(5): 416-419. DOI: 10.1016/S1005-8850(06)60084-4
  • Cited by

    Periodical cited type(77)

    1. Din Bandhu, Aiham O. Altayeh, Nouby M. Ghazaly, et al. Experimental and numerical investigation of the solid cold-welding properties of the APB process of Al/Cu bulk composites. International Journal on Interactive Design and Manufacturing (IJIDeM), 2025, 19(1): 523. DOI:10.1007/s12008-024-02022-7
    2. Fadi Abouhilou, Ammar Jabbar Hassan, Mohammed Atma, et al. Comparative analysis of plastic anisotropy in aluminum-based alloys through Lankford coefficient. Australian Journal of Mechanical Engineering, 2025. DOI:10.1080/14484846.2025.2452672
    3. Morteza Alizadeh, Abbas Karimi, Shima Pashangeh, et al. Characterization of wear and corrosion behavior of Al/Cu/MoS2/WC hybrid metal matrix composite fabricated via accumulative roll bonding process. Journal of Materials Research and Technology, 2025, 35: 4647. DOI:10.1016/j.jmrt.2025.01.230
    4. Yuhong Sun, Xiang Chen, Liexing Zhou, et al. An innovative approach for overcoming challenges in the stacked extrusion forming of Mg/Al composite plates. Materials Today Communications, 2024, 40: 110114. DOI:10.1016/j.mtcomm.2024.110114
    5. Harikumar Pallathadka, Nouby M. Ghazaly, Merwa Alhadrawi, et al. Electromagnetic and Fracture Properties of AA1100/Fe2O3 Composite Strips Fabricated via Arb Process. Powder Metallurgy and Metal Ceramics, 2024, 63(5-6): 280. DOI:10.1007/s11106-025-00461-9
    6. Sarah Panahi, Ibrahim Roshan, Reza Javid. WITHDRAWN: Revealing the effect of lubrication conditions, rolling speed, and rolling strain on Al/Zn/Al composites: investigation of microstructure, grain structure, and mechanical properties. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113899
    7. Qingqing Pu, Zhiping Wang, Tai Luo, et al. Optimizing strength and fatigue crack propagation resistance of in-situ TiB2/Al-Cu-Mg composite sheet. International Journal of Fatigue, 2024, 179: 108058. DOI:10.1016/j.ijfatigue.2023.108058
    8. PAUL RODRIGUES, SANDEEP SINGH, ASHISH SINGH, et al. FABRICATION OF AA1100/Fl2O3 COMPOSITE STRIPS AND THE IMPROVEMENT OF THEIR ELECTROMAGNETIC, MECHANICAL AND FRACTURE PROPERTIES. Surface Review and Letters, 2024. DOI:10.1142/S0218625X25500398
    9. Ke Wang, Xukai Ren, Yu Zhang, et al. The crucial role of accumulated strain and Cu content on the electrical, thermal, tensile, fracture, and microstructure characteristics of Al/Cu multi-layered composites subjected to SPD. Materials Today Communications, 2024, 41: 110338. DOI:10.1016/j.mtcomm.2024.110338
    10. Zihao Xing, Renfu Wang, Huarong Qi, et al. Effect of annealing on the microstructure and mechanical properties of Al/Zn composite plates. Materials Science and Engineering: A, 2024, 901: 146533. DOI:10.1016/j.msea.2024.146533
    11. Lingqin Xia, Yihang Fang, Guang Chen, et al. Manufacturing of aluminium/copper/nickel(powder) metal intermetallic composite by accumulative roll bonding and subsequent heat treatment. Materials Science and Technology, 2024, 40(15): 1152. DOI:10.1177/02670836241241987
    12. Yuanhao Wang, Guangming Zhu, Xujie Gao, et al. Study on the metal flow and mechanical properties of extruded bent aluminum profile using a novel torsional channel self-bending process. The International Journal of Advanced Manufacturing Technology, 2024, 133(5-6): 2255. DOI:10.1007/s00170-024-13853-9
    13. ALDRIASAWI SALMAN KHAYOON, NIHAYAT HUSSEIN AMEEN, KAMYA PITHODE, et al. ELECTROMAGNETIC PROPERTIES, FORMING LIMIT DIAGRAMS AND FRACTURE TOUGHNESS OF LAMINATED AL/FE2O3 COMPOSITES. Surface Review and Letters, 2024, 31(03) DOI:10.1142/S0218625X24500227
    14. Bo Feng, Hao-kun Yang, Xiao-hui Li, et al. Development of accumulative roll bonding for metallic composite material preparation and mechanical/functional applications. Journal of Iron and Steel Research International, 2024, 31(11): 2611. DOI:10.1007/s42243-024-01244-z
    15. CARLOS RODRIGUEZ-BENITES, MERWA ALHADRAWI, EKATERINA DIAKINA, et al. EVOLUTION OF THE PRESS BONDING PROPERTIES OF Al/Cu BIMETAL BULK COMPOSITES (EXPERIMENTAL AND NUMERICAL INVESTIGATION). Surface Review and Letters, 2024. DOI:10.1142/S0218625X25500465
    16. Yuhong Sun, Zulai Li, Junlei Zhang, et al. Microstructure and mechanical properties of Mg/Al laminated composite: The effect of transition layer thickness. Journal of Alloys and Compounds, 2024, 1005: 176045. DOI:10.1016/j.jallcom.2024.176045
    17. EYHAB ALI, ABDUL NASSER MAHMOOD FATAH, AHMED ALAWADI, et al. EFFECT OF ARB PROCESS ON WEAR RESISTANCE, PLAN STRESS FRACTURE TOUGHNESS AND FORMING LIMIT DIAGRAMS OF LAMINATED Al/SiC COMPOSITES. Surface Review and Letters, 2024, 31(05) DOI:10.1142/S0218625X24500410
    18. Mohammad Heydari Vini, Saeed Daneshmand. An experimental investigation of fracture toughness, mechanical properties and forming limit curves of Al composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2024, 238(7): 2831. DOI:10.1177/09544062231196010
    19. Ashkan Barfeh, Ramin Hashemi, Rasoul Safdarian, et al. Predicting the forming limit diagram of the fine-grained AA 1050 sheet using GTN damage model with experimental verifications. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237(14): 2325. DOI:10.1177/09544054221138900
    20. Zohreh Sarvi, Alireza Sadeghi, Mahmoud Mosavi Mashhadi. Stoichiometry and Texture Evolution of Individual Layers during Accumulative Roll Bonding of Al-Mg Laminated Composites. Journal of Materials Engineering and Performance, 2023, 32(18): 8358. DOI:10.1007/s11665-022-07704-5
    21. Polina V. Polyakova, Julia A. Baimova, Radik R. Mulyukov. Bonding of Dissimilar Metals in the Interlayer Region in Al-Based Composites: Molecular Dynamics. Symmetry, 2023, 15(2): 328. DOI:10.3390/sym15020328
    22. S. M. Atifeh, A. Rouzbeh, M. Sedighi, et al. Effect of Rolling Process on Formability and Mechanical Properties of AA 1050/Mg AZ31B Bilayer Sheet. Journal of Materials Engineering and Performance, 2023, 32(18): 8493. DOI:10.1007/s11665-022-07732-1
    23. Xianlei Hu, Qincheng Xie, Yi Yuan, et al. Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method. Materials, 2023, 16(17): 5986. DOI:10.3390/ma16175986
    24. Mohammad Heydari Vini, Saeed Daneshmand. Forming limit diagram and plane stress fracture toughness of foil AA1050/TiC composites. International Journal of Material Forming, 2023, 16(4) DOI:10.1007/s12289-023-01764-1
    25. Amirhossein Mashhuriazar, Ali Ebrahimzadeh Pilehrood, Hossein Moghanni, et al. Finite Element Analysis and Optimization of Equal-Channel Angular Rolling Process by Using Taguchi Methodology. Journal of Materials Engineering and Performance, 2023, 32(1): 176. DOI:10.1007/s11665-022-07100-z
    26. Saeed Daneshmand, Mohammad Heydari Vini, Jinmer Bravo-Apaza, et al. Fabrication of Al/BN composite strips and evaluation of fracture toughness and forming limit diagram. Materials Today Communications, 2023, 37: 107457. DOI:10.1016/j.mtcomm.2023.107457
    27. P. V. Polyakova, J. A. Baimova. The Effect of Atomic Interdiffusion at the Al/Сu Interface in an Al/Сu Composite on Its Mechanical Properties: Molecular Dynamics. Physics of Metals and Metallography, 2023, 124(4): 394. DOI:10.1134/S0031918X22602116
    28. Ismail Bencherifa, Baya Alili, Thierry Baudin, et al. On the microstructure and texture of intermetallics in Al/Mg/Al multi-layer composite fabricated by Accumulative Roll Bonding. Micron, 2023, 173: 103507. DOI:10.1016/j.micron.2023.103507
    29. P. V. Polyakova, Yu. A. Baimova. The Effect of Atomic Interdiffusion at the Al/Сu Interface in an Al/Сu Composite on Its Mechanical Properties: Molecular Dynamics. Физика металлов и металловедение, 2023, 124(4): 415. DOI:10.31857/S0015323022601611
    30. Hiba Azzeddine, Djamel Bradai, Thierry Baudin, et al. Texture evolution in high-pressure torsion processing. Progress in Materials Science, 2022, 125: 100886. DOI:10.1016/j.pmatsci.2021.100886
    31. Shuang Jiang, Ru Lin Peng, Kristián Máthis, et al. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites. Journal of Materials Science & Technology, 2022, 110: 260. DOI:10.1016/j.jmst.2021.09.032
    32. Jiang-jiang LIU, Ze-jun CHEN, Zhan-song ZHOU, et al. Microstructure evolution, mechanical properties and tailoring of coefficient of thermal expansion for Cu/Mo/Cu clad sheets fabricated by hot rolling. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2290. DOI:10.1016/S1003-6326(22)65948-X
    33. Mahmoud Ebrahimi, Qudong Wang. Accumulative roll-bonding of aluminum alloys and composites: An overview of properties and performance. Journal of Materials Research and Technology, 2022, 19: 4381. DOI:10.1016/j.jmrt.2022.06.175
    34. Yitao Wang, Jianbo Li, Bo Guan, et al. Microstructure and mechanical properties of hybrid graphene nanoplatelets/titanium particles reinforced AZ91 laminated composite. Materials Science and Engineering: A, 2022, 856: 144017. DOI:10.1016/j.msea.2022.144017
    35. M. Ahmadi, S.A.A. Bozorgnia Tabary, D. Rahmatabadi, et al. Review of selective laser melting of magnesium alloys: advantages, microstructure and mechanical characterizations, defects, challenges, and applications. Journal of Materials Research and Technology, 2022, 19: 1537. DOI:10.1016/j.jmrt.2022.05.102
    36. Neda Kalantarrashidi, Morteza Alizadeh, Shima Pashangeh. Consideration on zinc content on the microstructure, mechanical, and corrosion evolution of aluminum/zinc composites fabricated by CARB process. Journal of Materials Research and Technology, 2022, 19: 1805. DOI:10.1016/j.jmrt.2022.05.133
    37. Shengwen Bai, Liping Wei, Chao He, et al. Effects of layer thickness ratio on the bendability of Mg-Al-Zn/Mg-Gd laminated composite sheet. Journal of Materials Research and Technology, 2022, 21: 1013. DOI:10.1016/j.jmrt.2022.09.101
    38. A. Bayati, D. Rahmatabadi, K. Soltanmohammadi, et al. Evaluation of forming limit diagrams using Nakazima out-of-plane test and incremental forming process for two-phase magnesium–lithium alloy sheet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(2) DOI:10.1007/s40430-020-02770-z
    39. Armin SIAHSARANI, Ghader FARAJI. Processing and characterization of AZ91 magnesium alloys via a novel severe plastic deformation method: Hydrostatic cyclic extrusion compression (HCEC). Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1303. DOI:10.1016/S1003-6326(21)65579-6
    40. Mahsa Avazzadeh, Morteza Alizadeh, Moslem Tayyebi. Structural, mechanical and corrosion evaluations of Cu/Zn/Al multilayered composites subjected to CARB process. Journal of Alloys and Compounds, 2021, 867: 158973. DOI:10.1016/j.jallcom.2021.158973
    41. D. Rahmatabadi, M. Pahlavani, J. Marzbanrad, et al. Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(9): 1363. DOI:10.1177/0954405421995667
    42. Hosein Zayadi, Ali Parvizi, Hamid Reza Farahmand, et al. Investigation of cavity filling in profile ring rolling process for T-shape ring. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235(11): 2505. DOI:10.1177/14644207211007513
    43. Galiya Korznikova, Elena Korznikova, Gulnara Khalikova, et al. Al based layered in situ metal-matrix composites fabricated by constrained high pressure torsion. Letters on Materials, 2021, 11(4s): 533. DOI:10.22226/2410-3535-2021-4-533-543
    44. Moslem Tayyebi, Maryam Adhami, Armin Karimi, et al. Effects of strain accumulation and annealing on interfacial microstructure and grain structure (Mg and Al3Mg2 layers) of Al/Cu/Mg multilayered composite fabricated by ARB process. Journal of Materials Research and Technology, 2021, 14: 392. DOI:10.1016/j.jmrt.2021.06.032
    45. P. Mansoor, S.M. Dasharath. A review paper on magnesium alloy fabricated by severe plastic deformation technology and its effects over microstructural and mechanical properties. Materials Today: Proceedings, 2021, 45: 356. DOI:10.1016/j.matpr.2020.10.1014
    46. Galia F. Korznikova, Alexander P. Zhilyaev, Aygul A. Sarkeeva, et al. Metallic Composites, Prepared by Deformation Processing. Materials Science Forum, 2021, 1016: 1759. DOI:10.4028/www.scientific.net/MSF.1016.1759
    47. Ehsan Etemadi, Mostafa Alishahi, Seyed Mehdi Hosseini. Fabrication and Mechanical Properties of Aluminum/Zinc Lamellar Composite Reinforced with Alumina Nanoparticles. Journal of Testing and Evaluation, 2021, 49(5): 3401. DOI:10.1520/JTE20200290
    48. Jianping Huang, Moslem Tayyebi, Amir Hossein Assari. Effect of SiC particle size and severe deformation on mechanical properties and thermal conductivity of Cu/Al/Ni/SiC composite fabricated by ARB process. Journal of Manufacturing Processes, 2021, 68: 57. DOI:10.1016/j.jmapro.2021.07.017
    49. Mohammad Delshad Gholami, Mohammad Salamat, Ramin Hashemi. Study of mechanical properties and wear resistance of Al 1050/Brass (70/30)/Al 1050 composite sheets fabricated by the accumulative roll bonding process. Journal of Manufacturing Processes, 2021, 71: 407. DOI:10.1016/j.jmapro.2021.09.032
    50. Feng shao, Yanshang Wang, Wu Lian, et al. Experimental and numerical investigation on withdrawal connectors usage for lateral resistance of timber shear walls structure. Journal of Building Engineering, 2021, 44: 103266. DOI:10.1016/j.jobe.2021.103266
    51. Davood Rahmatabadi, Mina Ahmadi, Mostafa Pahlavani, et al. DIC-based experimental study of fracture toughness through R-curve tests in a multi-layered Al-Mg (LZ91) composite fabricated by ARB. Journal of Alloys and Compounds, 2021, 883: 160843. DOI:10.1016/j.jallcom.2021.160843
    52. M Delshad Gholami, D Rahmatabadi, T Shojaee, et al. The role of applied strain and volume percentage of components on mechanical properties and fracture toughness in multilayered Al/Mg composite fabricated by the accumulative roll bonding process. Materials Research Express, 2021, 8(2): 026508. DOI:10.1088/2053-1591/abe103
    53. Wanshun Zhang, Wenkai Zhang, Hongyang Zhao, et al. Microstructures and electromagnetic interference shielding effectiveness of ME21/Mg laminated materials by accumulative roll bonding. Materials Research Express, 2021, 8(12): 126529. DOI:10.1088/2053-1591/ac44d7
    54. R. R. Mulyukov, G. F. Korznikova, K. S. Nazarov, et al. Annealing-induced phase transformations and hardness evolution in Al–Cu–Al composites obtained by high-pressure torsion. Acta Mechanica, 2021, 232(5): 1815. DOI:10.1007/s00707-020-02858-6
    55. Mehran Tamjidi Eskandar, Ali Parvizi, Davood Rahmatabadi, et al. Asymmetric accumulative roll bonding of aluminum/copper composite sheets. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235(4): 842. DOI:10.1177/1464420720980482
    56. Zhi Zhang, Jing-huai Zhang, Jun Wang, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 30. DOI:10.1007/s12613-020-2190-1
    57. Farshad Samadpour, Ghader Faraji, Armin Siahsarani. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 669. DOI:10.1007/s12613-019-1921-7
    58. E A Alisaraei, R Hashemi, D Rahmatabadi, et al. Experimental study of forming limit diagram and mechanical properties of aluminum foils processed by the accumulative roll bonding. Materials Research Express, 2020, 7(12): 126511. DOI:10.1088/2053-1591/abced9
    59. E Etemadi, D Rahmatabadi, SM Hosseini, et al. Experimental investigation of spring-back phenomenon through an L-die bending process for multilayered sheets produced by the accumulative press bonding technique. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(12): 1550. DOI:10.1177/1464420720948888
    60. Davood Rahmatabadi, Mostafa Pahlavani, Mohammad Delshad Gholami, et al. Production of Al/Mg-Li composite by the accumulative roll bonding process. Journal of Materials Research and Technology, 2020, 9(4): 7880. DOI:10.1016/j.jmrt.2020.05.084
    61. Lin Wang, Juan Liu, Charlie Kong, et al. Sandwich‐Like Cu/Al/Cu Composites Fabricated by Cryorolling. Advanced Engineering Materials, 2020, 22(10) DOI:10.1002/adem.202000122
    62. Ahmad Aminzadeh, Ali Parvizi, Mahmoud Moradi. Multi-objective topology optimization of deep drawing dissimilar tailor laser welded blanks; experimental and finite element investigation. Optics & Laser Technology, 2020, 125: 106029. DOI:10.1016/j.optlastec.2019.106029
    63. Galiia Korznikova, Rinat Kabirov, Konstantin Nazarov, et al. Influence of Constrained High-Pressure Torsion on Microstructure and Mechanical Properties of an Aluminum-Based Metal Matrix Composite. JOM, 2020, 72(8): 2898. DOI:10.1007/s11837-020-04152-1
    64. M Tayyebi, D Rahmatabadi, M Adhami, et al. Manufacturing of high-strength multilayered composite by accumulative roll bonding. Materials Research Express, 2020, 6(12): 1265e6. DOI:10.1088/2053-1591/ab6408
    65. A. HOSSEINI, D. RAHMATABADI, R. HASHEMI, et al. Experimental and numerical assessment of energy absorption capacity of thin-walled Al 5083 tube produced by PTCAP process. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1238. DOI:10.1016/S1003-6326(20)65292-X
    66. Lin WANG, Qing-lin DU, Chang LI, et al. Enhanced mechanical properties of lamellar Cu/Al composites processed via high-temperature accumulative roll bonding. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1621. DOI:10.1016/S1003-6326(19)65069-7
    67. J. Eisaabadi Bozcheloei, M. Sedighi, R. Hashemi. The effect of temperature on the mechanical properties and forming limit diagram of Al 5083 produced by equal channel angular rolling. The International Journal of Advanced Manufacturing Technology, 2019, 105(10): 4389. DOI:10.1007/s00170-019-04586-1
    68. D Rahmatabadi, A Shahmirzaloo, R Hashemi, et al. Using digital image correlation for characterizing the elastic and plastic parameters of ultrafine-grained Al 1050 strips fabricated via accumulative roll bonding process. Materials Research Express, 2019, 6(8): 086542. DOI:10.1088/2053-1591/ab18c3
    69. H Sadeghinia, H R Jafarian, M T Salehi, et al. Comprehensive investigation on wear and microstructure development in Al/ti ultrafine grained multi-layered composite produced by Accumulative Roll Bonding (ARB). Materials Research Express, 2019, 6(11): 116572. DOI:10.1088/2053-1591/ab49e3
    70. M Pahlavani, J Marzbanrad, D Rahmatabadi, et al. A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg-Li alloys using RSM. Materials Research Express, 2019, 6(7): 076554. DOI:10.1088/2053-1591/ab1369
    71. D Rahmatabadi, R Hashemi, M Tayyebi, et al. Investigation of mechanical properties, formability, and anisotropy of dual phase Mg–7Li–1Zn. Materials Research Express, 2019, 6(9): 096543. DOI:10.1088/2053-1591/ab2de6
    72. M. Heydari Vini, S. Daneshmand. Effect of Electrically Assisted Accumulative Roll Bonding (EARB) Process on the Mechanical Properties and Microstructure Evolution of AA5083/Al2O3 Composites. Materials Performance and Characterization, 2019, 8(1): 594. DOI:10.1520/MPC20190122
    73. D. Rahmatabadi, A. Shahmirzaloo, M. Farahani, et al. Characterizing the elastic and plastic properties of the multilayered Al/Brass composite produced by ARB using DIC. Materials Science and Engineering: A, 2019, 753: 70. DOI:10.1016/j.msea.2019.03.002
    74. M. Tayyebi, D. Rahmatabadi, M. Adhami, et al. Influence of ARB technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles. Journal of Materials Research and Technology, 2019, 8(5): 4287. DOI:10.1016/j.jmrt.2019.07.039
    75. D. Rahmatabadi, B. Mohammadi, R. Hashemi, et al. An Experimental Study of Fracture Toughness for Nano/Ultrafine Grained Al5052/Cu Multilayered Composite Processed by Accumulative Roll Bonding. Journal of Manufacturing Science and Engineering, 2018, 140(10) DOI:10.1115/1.4040542
    76. Davood Rahmatabadi, Moslem Tayyebi, Ahmad Sheikhi, et al. Fracture toughness investigation of Al1050/Cu/MgAZ31ZB multi-layered composite produced by accumulative roll bonding process. Materials Science and Engineering: A, 2018, 734: 427. DOI:10.1016/j.msea.2018.08.017
    77. D Rahmatabadi, M Pahlavani, A Bayati, et al. Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet. Materials Research Express, 2018, 6(3): 036517. DOI:10.1088/2053-1591/aaf54f

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (865) PDF downloads (47) Cited by(77)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return