Shuang-jiang He, Yan-bin Jiang, Jian-xin Xie, Yong-hua Li,  and Li-juan Yue, Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 641-651. https://doi.org/10.1007/s12613-018-1611-x
Cite this article as:
Shuang-jiang He, Yan-bin Jiang, Jian-xin Xie, Yong-hua Li,  and Li-juan Yue, Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 641-651. https://doi.org/10.1007/s12613-018-1611-x
Research Article

Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys

+ Author Affiliations
  • Corresponding author:

    Jian-xin Xie    E-mail: jxxie@mater.ustb.edu.cn

  • Received: 25 August 2017Revised: 13 October 2017Accepted: 22 November 2017
  • The effects of Ni content (0–2.1wt%) on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated, and the corresponding mechanisms of influence were analyzed. The results show that the amount of precipitated phase increases in the cast alloys with increasing Ni content. When the Ni content is 0.45wt% or 0.98wt%, needle-like Be21Ni5 phases form in the grains and are mainly distributed in the interdendritic regions. When the Ni content is 1.5wt% or greater, a large number of needle-like precipitates form in the grains and chain-like Be21Ni5 and BeNi precipitates form along the grain boundaries. The addition of Ni can substantially refine the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. The hindering effects of both the dissolution of Ni into the matrix and the formation of Be–Ni precipitates on grain-boundary migration are mainly responsible for refining the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. Higher Ni contents result in finer microstructures; however, given the precipitation characteristics of Be–Ni phases and their dissolution into the matrix during the solid-solution treatment, the upper limit of the Ni content is 1.5wt%–2.1wt%.
  • loading
  • [1]
    W. Wang, Production status and application prospect of beryllium copper alloy, Nonferrous Met. Process., 43(2014), No. 2, p. 9.
    [2]
    Y.V. Murty, Electrical and electronic connectors: materials and technology, Encycl. Mater. Sci. Technol., 2001, p. 2483.
    [3]
    P. Behjati, H. Vahid Dastjerdi, and R. Mahdavi, Influence of ageing process on sound velocity in C17200 copper-beryllium alloy, J. Alloys Compd., 505(2010), No. 2, p. 739.
    [4]
    L. Yagmur, Effect of microstructure on internal friction and Young’s modulus of aged Cu-Be alloy, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 65.
    [5]
    J.C. Pang, Q.Q. Duan, S.D. Wu, S.X. Li, and Z.F. Zhang, Fatigue strengths of Cu-Be alloy with high tensile strengths, Scripta Mater., 63(2010), No. 11, p. 1085.
    [6]
    N. Argibay, J.A. Bares, J.H. Keith, G.R. Bourne, and W.G. Sawyer, Copper-beryllium metal fiber brushes in high current density sliding electrical contacts, Wear, 268(2010), No. 11-12, p. 1230.
    [7]
    G.L. Xie, Q.S. Wang, X.J. Mi, B.Q. Xiong, and L.J. Peng, The precipitation behavior and strengthening of a Cu-2.0wt% Be alloy, Mater. Sci. Eng. A, 558(2012), p. 326.
    [8]
    D.B. Zhu, C.M. Liu, T. Han, Y.D. Liu, and H.P. Xie, Effects of secondary β and γ phases on the work function properties of Cu-Be alloys, Appl. Phys. A, 120(2015), No. 3, p. 1023.
    [9]
    L. Yagmur, O. Duygulu, and B. Aydemir, Investigation of metastable γ’ precipitate using HRTEM in aged Cu-Be alloy, Mater. Sci. Eng. A, 528(2012), No. 12, p. 4147.
    [10]
    R. Monzen, C. Watanabe, D. Mino, and S. Saida, Initiation and growth of the discontinuous precipitation reaction at
    [11]
    symmetric tilt boundaries in Cu-Be alloy bicrystals, Acta Mater., 53(2005), No. 4, p. 1253.
    [12]
    A. Rotem, D. Shechtman, and A. Rosen, Correlation among microstructure, strength, and electrical conductivity of Cu-Ni-Be alloy, Mater. Trans. A, 19(1988), No. 9, p. 2279.
    [13]
    R. Monzen, T. Hosoda, Y. Takagawa, and C. Watanabe, Bend formability and strength of Cu-Be-Co alloys, J. Mater. Sci., 46(2011), No. 12, p. 4284.
    [14]
    Y.C. Tang, G.M. Zhu, Y.L. Kang, L.J. Yue, and X.L. Jiao, Effect of microstructure on the fatigue crack growth behavior of Cu-Be-Co-Ni alloy, J. Alloys Compd., 663(2016), p. 784.
    [15]
    Y.C. Tang, Y.L. Kang, L.J. Yue, and X.L. Jiao, Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design, J. Alloys Compd., 695(2017), p. 613.
    [16]
    S.J. Zinkle, Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications, J. Nucl. Mater., 449(2014), No. 1-3, p. 277.
    [17]
    S. Spaić and B. Markoli, Microstructural characterization of alloys of the quasibinary Cu-NiBe system, Z. Metallkd., 94(2003), No. 8, p. 876.
    [18]
    C.M. Liu, H.Z. Li, and T. Han, Phase Diagrams of Copper Alloy, Central South University Press, Changsha, 2011, p. 9.
    [19]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, England, 2004, p. 209.
    [20]
    L.J. Peng, B.Q. Xiong, G.L. Xie, Q.S. Wang, and S.B. Hong, Precipitation process and its effects on properties of aging Cu-Ni-Be alloy, Rare Met., 32(2013), No. 4, p. 332.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(468) PDF Downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return