Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation
-
Graphical Abstract
-
Abstract
To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D (D=Ni/Nf, where Ni and Nf are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σYS, ultimate tensile strength σUTS, and uniform strain ε exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.
-
-