Qing-ling Li, Hua-rui Zhang, Ming Gao, Jin-peng Li, Tong-xiao Tao, and Hu Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 696-703. https://doi.org/10.1007/s12613-018-1617-4
Cite this article as:
Qing-ling Li, Hua-rui Zhang, Ming Gao, Jin-peng Li, Tong-xiao Tao, and Hu Zhang, Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 696-703. https://doi.org/10.1007/s12613-018-1617-4
Research Article

Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting

+ Author Affiliations
  • Corresponding authors:

    Hua-rui Zhang    E-mail: huarui@buaa.edu.cn

    Hu Zhang    E-mail: zhanghu@buaa.edu.cn

  • Received: 15 October 2017Revised: 31 January 2018Accepted: 12 February 2017
  • The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.
  • [1]
    A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment, Mater. Sci. Eng. A, 682(2017), p. 441.
    [2]
    D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada, Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 99.
    [3]
    G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner, Microstructure and mechanical properties of the superalloy ATI Allvac® 718PlusTM, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 295.
    [4]
    D.K. Das, V. Singh, and S.V. Joshi, High temperature oxidation behaviour of directionally solidified nickel base superalloy CM-247LC, Mater. Sci. Technol., 19(2013), No. 6, p. 695.
    [5]
    E.C. Caldwell, F.J. Fela, and G.E. Fuchs, The segregation of elements in high refactory-content single-crystal nickel-based superalloys, JOM, 56(2004), No. 9, p. 44.
    [6]
    A.J. Brand, K. Karhausen, and R. Kopp, Microstructural simulation of nickel base alloy Incone* 718 in production of turbine discs, Mater. Sci. Technol., 12(1996), No. 11, p. 963.
    [7]
    T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propul. Power, 22(2006), No. 2, p. 361.
    [8]
    V.V. Sidorov, V.E. Rigin, P.G. Min, and Y.I. Folomeikin, Removal of a sulfur impurity from complex nickel melts in vacuum, Russ. Metall., 2015(2015), No. 11, p. 910.
    [9]
    H. Naffakh-Moosavy, Microstructural evolution and castability prediction in newly designed modern third-generation nickel-based superalloys, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 548.
    [10]
    L. Wang, Y. Wang, Y. Liu, X. Song, X.D. Lü, and B.J. Zhang, Coarsening behavior of γ' and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 861.
    [11]
    W.X. Yu and J.P. Niu, Deoxidation and denitrogenation during VIM refining Ni-base superalloy, New Technol. New Process, 2002, No. 3, p. 32.
    [12]
    C.F. Miller, G.W. Simmons, and R.P. Wei, Mechanism for oxygen enhanced crack growth in inconel 718, Scripta Mater., 44(2001), No. 10, p. 2405.
    [13]
    K. Sadananda and P. Shahinian, The effect of environment on the creep crack growth behavior several structural alloys, Mater. Sci. Eng., 43(1980), No. 2, p. 159.
    [14]
    C. Sarioglu, C. Stinner, J.R. Blachere, N. Birks, F.S. Pettit, G.H. Meier, and J.L. Smialek, The control of sulfur content in nickel-base, single crystal superalloys and its effects on cyclic oxidation resistance, Superalloys, 1996, p. 71.
    [15]
    T.M. Simpson and A.R. Price, Oxidation improvements of low sulfur processed superalloys, Superalloys, 2000, p. 387.
    [16]
    J.X. Dong, X.B. Liu, B. Tang, Y.H. Hu, Z.C. Xu, and X.S. Xie, Effects of S on mechanical properties and microstructure of Inconel 718 alloy, Acta Metall. Sin., 32(1996), No. 3, p. 241.
    [17]
    L.V. Ramanathan, Role of rare-earth elements on high temperature oxidation behavior of FeCr, NiCr and NiCrAl alloys, Corros. Sci., 35(1993), No. 5-8, p. 871.
    [18]
    N. Nayan, Govind, C.N. Saikrishna, K.V. Ramaiah, S.K. Bhaumik, K.S. Nair, and M.C. Mittal, Vacuum induction melting of NiTi shape memory alloys in graphite crucible, Mater. Sci. Eng. A, 465(2007), No. 1-2, p. 44.
    [19]
    X.H. Cheng, L. Fan, L. Li, K.F. Du, and D.H. Wang, Effect of doping aluminum and yttrium on high-temperature oxidation behavior of Ni-11Fe-10Cu alloy, J. Rare Earths, 34(2016), No. 11, p. 1139.
    [20]
    X.L. Li, S.M. He, X.T. Zhou, Y. Zou, Z.J. Li, A.G. Li, and X.H. Yu, Effects of rare earth yttrium on microstructure and properties of Ni-16Mo-7Cr-4Fe nickel-based superalloy, Mater. Charact., 95(2014), p. 171.
    [21]
    P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, X.M. He, and Z.Q. Hu, Influence of Y on stress rupture property of a Ni-based superalloy, Mater. Sci. Eng. A, 551(2012), p. 236.
    [22]
    L.G. Song, S.S. Li, Y.R. Zheng, and Y.F. Han, Effect of yttrium on high temperature oxidation resistance of a directionally solidified superalloy, J. Rare Earths, 22(2004), No. 6, p. 794.
    [23]
    H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong, and H. Zhang, Purification behaviour of GH4169 scraps under argon atmosphere during vacuum induction melting, Mater. Res. Innovations, 18(2014), No. S4, p. 357.
    [24]
    H.R. Zhang, X.X. Tang, C.G. Zhou, H. Zhang, and S.W. Zhang, Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles, J. Eur. Ceram. Soc., 33(2013), No. 5, p. 925.
    [25]
    S.J. Li, Y.H. Hu, H.S. Mei, X.S. Xie, Y.H. He, and H.B. Zhang, Desulphurization of Ni-base superalloy GH690, J. Iron Steel Res., 15(2003), No. 7, p. 317.
    [26]
    L.H. Zhao, X.M. Zheng, and J.H. Fei, Surface properties of rare earth oxide solid-base catalysts.. Characterization of Ⅰ surface active sites of rare earth oxide calalysts, Chin. J. Catal., 17(1996), No. 3, p. 227.
    [27]
    C. Sun, R.F. Huang, J.T. Guo, and Z.Q. Hu, Sulphur distribution in K24 cast nickel-base superalloy and its influence on mechanical properties, High Temp. Technol., 6(1988), No. 3, p. 145.
  • Relative Articles

    [1]Xiao-yong Gao, Lin Zhang, Xuan-hui Qu, Xiao-wei Chen, Yi-feng Luan. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1551-1559. doi: 10.1007/s12613-020-2098-9
    [2]Jing Guo, Shu-sen Cheng, Han-jie Guo, Ya-guang Mei. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 280-287. doi: 10.1007/s12613-018-1571-1
    [3]Bing Ni, Tao Zhang, Hai-qi Ni, Zhi-guo Luo. Mechanism and simulation of droplet coalescence in molten steel[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1251-1259. doi: 10.1007/s12613-017-1517-z
    [4]Sung Jin Kim, Kang Mook Ryu, Min-suk Oh. Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(4): 415-422. doi: 10.1007/s12613-017-1422-5
    [5]Yu-jie Hu, Chao-bo Tang, Mo-tang Tang, Yong-ming Chen. Reductive smelting of spent lead–acid battery colloid sludge in a molten Na2CO3 salt[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 798-803. doi: 10.1007/s12613-015-1136-5
    [6]Qing-chun Yu, Yong Deng, Fei Wang, Yue-bin Feng, Xiu-min Chen, Bin Yang, Da-chun Liu. Preparation of activated ceria and its desulfurization performance[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(9): 992-997. doi: 10.1007/s12613-015-1160-5
    [7]Zheng Wu, Jing Li, Cheng-bin Shi, Liang-liang Wang. Effect of magnesium addition on inclusions in H13 die steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1062-1067. doi: 10.1007/s12613-014-1010-x
    [8]Yan-hui Sun, Ya-nan Zeng, Rui Xu, Kai-ke Cai. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1068-1076. doi: 10.1007/s12613-014-1011-9
    [9]Hui-xiang Yu, Xin-hua Wang, Mao Wang, Wan-jun Wang. Desulfurization ability of refining slag with medium basicity[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(12): 1160-1166. doi: 10.1007/s12613-014-1023-5
    [10]Y. A. El-Nadi, N. E. El-Hefny, H. F. Aly. Solvent extraction and recovery of Y(III) and Yb(III) from fluorspar mineral[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(8): 713-719. doi: 10.1007/s12613-013-0788-2
    [11]Xi-ming Xiao, Xue-xu Gao, Ji-heng Li, Jian-xin Xie. Influence of yttrium on the structure and magnetostriction of Fe83Ga17 alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(9): 849-855. doi: 10.1007/s12613-012-0638-7
    [12]Wei-jie Peng, Yong Zhang. Eutectic reaction and cored dendritic morphology in yttrium doped Zr-based amorphous alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 747-751. doi: 10.1007/s12613-012-0622-2
    [13]Jie Li, Ti-chang Sun, Yong Wang, Li-na Wang, Jing-kui Qu, Tao Qi. Preparation and film-growing mechanism of hydrous zirconia coated on TiO2[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(5): 660-667. doi: 10.1007/s12613-010-0371-z
    [14]Zhi-zhong Hao, Sheng-li Wu, Yi-ci Wang, Guo-ping Luo, Hu-lin Wu, Xiang-guang Duan. Acting mechanism of F, K, and Na in the solid phase sintering reaction of the Baiyunebo iron ore[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 137-142. doi: 10.1007/s12613-010-0203-1
    [15]Dun-gu Wen, Yuan-zheng Yang, Zhen-jiang Dong, Ping-jun Tao, Zhi-wei Xie, Xian-chao Chen. Effects of yttrium on the formation and magnetic properties of bulk metallic glassy (Fe, Co)-B-Si-Nb alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 331-334. doi: 10.1007/s12613-010-0314-8
    [16]Yang Li, Zhouhua Jiang, Yang Liu. Strengthening mechanism of steels treated by barium-bearing alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(3): 220-226. doi: 10.1016/S1005-8850(08)60042-0
    [17]Anping Liu, Wen Ni, Wei Wu. Mechanism of separating pyrite and dolomite by flotation[J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(4): 291-296. doi: 10.1016/S1005-8850(07)60057-7
    [18]Heming Zhao, Xinhua Wang, Bing Xie. Effect of components on desulfurization of an Al2O3-CaO base pre-molten slag containing SrO[J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(3): 225-230.
    [19]Dongping Duan, Yibo Gong, Ju Wang. Agglomeration Mechanism of Rich Hematite Sinter with Lowering SiO2 Content[J]. International Journal of Minerals, Metallurgy and Materials, 2000, 7(4): 256-260.
    [20]CHENG Guoguang, ZHANG Jian. Optimum Slag Basicity for Deoxidation During Secondary Refining Process[J]. International Journal of Minerals, Metallurgy and Materials, 1997, 4(1): 4-7.
  • Periodical cited type(33)

    [1]Chenyu Lin, Naicheng Sheng, Shigang Fan, et al. Study on interfacial reaction behavior between CaO-Y2O3 ceramic and Ni-based superalloy melt during vacuum induction melting. Journal of the European Ceramic Society, 2025, 45(4): 117094. https://doi.org/10.1016/j.jeurceramsoc.2024.117094
    [2]Xu-Ze Li, Hao Feng, Hua-Bing Li, et al. Deoxidation of Nickel-based Superalloy Using Carbon under High Vacuum Degree. Metallurgical and Materials Transactions B, 2024, 55(6): 4503. https://doi.org/10.1007/s11663-024-03258-0
    [3]Xinming Wang, Chen Cui, Ying Ran, et al. Experimental investigation and thermodynamic description of the Ni-Mo-Y ternary system. Calphad, 2024, 87: 102739. https://doi.org/10.1016/j.calphad.2024.102739
    [4]Zihan Zhao, Kai Guan, Renjie Cui, et al. Effect of Y on Oxidation Behavior of Directionally Solidified Ni-Based Single-Crystal Superalloy. Chinese Journal of Mechanical Engineering, 2024, 37(1) https://doi.org/10.1186/s10033-024-01086-6
    [5]Thaviti Naidu Palleda, Hasina Tabassum Chowdhury, Santhosh Banoth, et al. Effects of yttrium content on solidification, microstructure, and mechanical properties of laser powder bed fused IN718 superalloy. Journal of Alloys and Compounds, 2024, 978: 173404. https://doi.org/10.1016/j.jallcom.2023.173404
    [6]Yinghao Wang, Xiaoxin Zhang, Haoxin Tian, et al. Effect of purity on solidification structure and micro-segregation in a nickel-based single crystal superalloy. Journal of Alloys and Compounds, 2024, 999: 174929. https://doi.org/10.1016/j.jallcom.2024.174929
    [7]Lirong Rong, Min Wang, Weiwei Xing, et al. Effects of cerium addition on the microstructure and stress rupture properties of a new nickel-based cast superalloy. Journal of Materials Science & Technology, 2023, 159: 112. https://doi.org/10.1016/j.jmst.2023.01.060
    [8]Qingling Li, Huarui Zhang, Ying Cheng, et al. Microalloying effects of Y on performance of cast nickel-based superalloy IN713C. Journal of Materials Research and Technology, 2023, 26: 3353. https://doi.org/10.1016/j.jmrt.2023.08.113
    [9]Baoshu Yin, Xiaojun Hu, Zhaoping Lu, et al. The effect of Ce addition on purification and inclusion modification of CoCrFeNiMn high entropy alloy. Journal of Alloys and Compounds, 2023, 934: 167716. https://doi.org/10.1016/j.jallcom.2022.167716
    [10]Thaviti Naidu Palleda, Santhosh Banoth, Mikiko Tanaka, et al. The role of yttrium micro-alloying on microstructure evolution and high-temperature mechanical properties of additively manufactured Inconel 718. Materials & Design, 2023, 225: 111567. https://doi.org/10.1016/j.matdes.2022.111567
    [11]Rui-zhi Gao, Lin-zhu Wang, Chao-yi Chen, et al. Agglomeration behavior of alumina inclusions and calcium aluminate inclusions on molten nickel-based superalloy surface. Journal of Iron and Steel Research International, 2023, 30(11): 2318. https://doi.org/10.1007/s42243-023-01052-x
    [12]Yueling Guo, Junyang He, Zhiming Li, et al. Solidification segregation-driven microstructural evolution of trace yttrium-alloyed TaMoNbZrTiAl refractory high entropy alloys. Materials Characterization, 2022, 194: 112495. https://doi.org/10.1016/j.matchar.2022.112495
    [13]Rosa Maria Sales da Silveira, Alessandra Vieira Guimarães, Clarissa Hadad de Melo, et al. Effect of yttrium addition on phase transformations in alloy 718. Journal of Materials Research and Technology, 2022, 18: 3283. https://doi.org/10.1016/j.jmrt.2022.03.137
    [14]Bing Wei, Zuming Liu, Bin Cao, et al. Selective laser melting of crack-free René 104 superalloy by Sc microalloying. Journal of Alloys and Compounds, 2022, 895: 162663. https://doi.org/10.1016/j.jallcom.2021.162663
    [15]Damian Migas, Hanna Myalska-Głowacka, Bartosz Chmiela, et al. Microstructural characterization of cerium rich phases in new polycrystalline Co–Al–W-xCe superalloys. Journal of Materials Research and Technology, 2022, 20: 1665. https://doi.org/10.1016/j.jmrt.2022.07.144
    [16]Shengchao Duan, Jiyeon Kang, Jinhyung Cho, et al. Manufacturing an Ultra-Low-Sulfur Cocrfemnni High-Entropy Alloy by Slagging Through Induction Melting with Ferroalloys Feedstock. SSRN Electronic Journal, 2022. https://doi.org/10.2139/ssrn.4135074
    [17]Baoshu Yin, Xiaojun HU. Study of CE on Purification and Inclusion Modification of Cocrfenimn High Entropy Alloy. SSRN Electronic Journal, 2022. https://doi.org/10.2139/ssrn.4196904
    [18]Baoshu Yin, Xiaojun HU. Study of CE on Purification and Inclusion Modification of Cocrfenimn High Entropy Alloy. SSRN Electronic Journal, 2022. https://doi.org/10.2139/ssrn.4184173
    [19]Shengchao Duan, Jiyeon Kang, Jinhyung Cho, et al. Manufacturing an ultra-low-sulfur CoCrFeMnNi high-entropy alloy by slagging through induction melting with ferroalloys feedstock. Journal of Alloys and Compounds, 2022, 928: 167080. https://doi.org/10.1016/j.jallcom.2022.167080
    [20]Khalil Rehman, Naicheng Sheng, Zhiru Sang, et al. Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy. Vacuum, 2021, 191: 110382. https://doi.org/10.1016/j.vacuum.2021.110382
    [21]Cheng-bin Shi, Yi Huang, Jian-xiao Zhang, et al. Review on desulfurization in electroslag remelting. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 18. https://doi.org/10.1007/s12613-020-2075-3
    [22]Baozhen Yang, Xiang Xiong, Rutie Liu, et al. Effect of yttrium hydride addition on microstructure and properties of powder metallurgy CM2 high speed steel. Journal of Materials Research and Technology, 2021, 14: 1275. https://doi.org/10.1016/j.jmrt.2021.07.056
    [23]Yi Li, Yi Tan, Xiaogang You, et al. The denitrification behavior during electron beam smelting of FGH4096 alloy. Vacuum, 2021, 189: 110212. https://doi.org/10.1016/j.vacuum.2021.110212
    [24]Shuting Cao, Yaqian Yang, Bo Chen, et al. Influence of yttrium on purification and carbide precipitation of superalloy K4169. Journal of Materials Science & Technology, 2021, 86: 260. https://doi.org/10.1016/j.jmst.2021.01.049
    [25]Shu-feng Yang, Shu-lei Yang, Jing-long Qu, et al. Inclusions in wrought superalloys: a review. Journal of Iron and Steel Research International, 2021, 28(8): 921. https://doi.org/10.1007/s42243-021-00617-y
    [26]Jinpeng Li, Huarui Zhang, Ming Gao, et al. Mechanisms of yttrium on the wettability, surface tension and interactions between Ni-20Co-20Cr-10Al-ξY alloys and MgO ceramics. Journal of Materials Science & Technology, 2021, 70: 39. https://doi.org/10.1016/j.jmst.2020.08.040
    [27]Sheng-Chao Duan, Xiao Shi, Man-Cang Zhang, et al. Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metallurgical and Materials Transactions B, 2020, 51(1): 353. https://doi.org/10.1007/s11663-019-01729-3
    [28]Xiao-yong Gao, Lin Zhang, Xuan-hui Qu, et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1551. https://doi.org/10.1007/s12613-020-2098-9
    [29]Xue-liang Zhang, Shu-feng Yang, Jing-she Li, et al. Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 754. https://doi.org/10.1007/s12613-019-1935-1
    [30]Sheng-Chao Duan, Xiao Shi, Fei Wang, et al. A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process. Metallurgical and Materials Transactions B, 2019, 50(6): 3055. https://doi.org/10.1007/s11663-019-01665-2
    [31]Weidong Bian, Huarui Zhang, Xiaoli Zhang, et al. Comprehensive influence of Y on K417 superalloy: Purification, interactions among the alloy elements and high temperature properties. Materials Science and Engineering: A, 2019, 755: 190. https://doi.org/10.1016/j.msea.2019.04.011
    [32]Chengbin Shi, Jing Li, Shufeng Yang. Electroslag Remelting Towards Clean Steel. https://doi.org/10.1007/978-981-99-3257-3_5
    [33]Chengbin Shi, Jing Li, Shufeng Yang. Electroslag Remelting Towards Clean Steel. https://doi.org/10.1007/978-981-99-3257-3_2

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuView Count, PDF Downloads StatisticsView CountPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-0105101520Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionView Count: 93.2 %View Count: 93.2 %PDF: 6.8 %PDF: 6.8 %View CountPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 59.0 %China: 59.0 %Germany: 2.4 %Germany: 2.4 %India: 3.1 %India: 3.1 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.7 %Japan: 0.7 %Korea Republic of: 1.5 %Korea Republic of: 1.5 %Morocco: 0.7 %Morocco: 0.7 %Reserved: 2.6 %Reserved: 2.6 %United Kingdom: 0.7 %United Kingdom: 0.7 %United States: 25.5 %United States: 25.5 %其他ChinaGermanyIndiaIran (ISLAMIC Republic Of)JapanKorea Republic ofMoroccoReservedUnited KingdomUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(564) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return