Yuan Gao, Zong-de Liu, Qi Wang,  and Yong-tian Wang, Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 824-831. https://doi.org/10.1007/s12613-018-1631-6
Cite this article as:
Yuan Gao, Zong-de Liu, Qi Wang,  and Yong-tian Wang, Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 824-831. https://doi.org/10.1007/s12613-018-1631-6
Research Article

Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering

+ Author Affiliations
  • Corresponding author:

    Zong-de Liu    E-mail: lzd@ncepu.edu.cn

  • Received: 9 November 2017Revised: 11 February 2018Accepted: 13 February 2018
  • Nb–Mo–ZrB2 composites (V(Nb)/V(Mo)=1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000℃. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid-solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.
  • loading
  • [1]
    Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776.
    [2]
    Y. Tan, C.L. Ma, A. Kasama, R. Tanaka, and J.M.Yang, High temperature mechanical behavior of Nb-Mo-ZrC alloys, Mater. Sci. Eng. A, 335(2003), No.1-2, p. 260.
    [3]
    J.L. Li, W. Wang, and C.G. Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 289.
    [4]
    K. Guan, L.N. Jia, B. Kong, S.N. Yuan, and H. Zhang, Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength, Mater. Sci. Eng. A, 663(2016), p. 98.
    [5]
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.
    [6]
    Y.L. Guo, L.N Jia, B. Kong, H.R. Zhang, and H. Zhang, Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition, Mater. Sci. Eng. A, 701(2017), p. 149.
    [7]
    M. Sharma and V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 222.
    [8]
    Y.L. Guo, L.N. Jia, B. Kong, S.N. Zhang, J.B. Sha, and H. Zhang, Microstructure transition from lamellar eutectic to anomalous eutectic of Nb–Si based alloy powders by heat treatment and spark plasma sintering, J. Alloys Compd., 696(2017), p. 516.
    [9]
    Z.P. Sun, J.M. Guo, C. Zhang, X.P. Guo, and X.D. Tian, Effect of Ti and Al interaction on microstructures and mechanical properties of the Nb-Ti-Si-Al alloys, Rare Met. Mater. Eng., 45(2016), No. 7, p. 1678.
    [10]
    Q. Huang, C.L. Ma, X.Q. Zhao, and H.B. Xu, Phase equilibria in Nb–Si–Mo ternary alloys at 1273K and 2073K, Chinese J. Aeronaut., 21(2008), No. 5, p. 448.
    [11]
    N. Nomura, K. Yoshimi, and S. Hanada, Mechanical properties of Mo–Nb–TiC in-situ composites synthesized by hot-pressing, Mater Trans JIM, 41(2000), No. 12, p. 1599.
    [12]
    B.X. Wei, Y.J. Wang, Y.W. Zhao, D. Wang, G.M. Song, Y.D. Fu, and Y. Zhou, Effect of NbC content on microstructure and mechanical properties of W-NbC composites, Int. J. Refract. Met. Hard Mater., 70(2018), p. 66.
    [13]
    P. Mannan, G. Casillas, and E.V. Pereloma, The effect of Nb solute and NbC precipitates on dynamic and metadynamic recrystallisation in Ni–30Fe–Nb–C model alloys, Mater. Sci. Eng. A, 700(2017), p. 116.
    [14]
    X. Sun, W.B. Han, P. Hu, Z. Wang, and X.H. Zhang, Microstructure and mechanical properties of ZrB2-Nb composite, Int. J. Refract. Met. Hard Mater., 28(2010), No. 3, p. 472.
    [15]
    S.M. Zhu, W.G. Fahrenholtz, and G.E. Hilmas, Enhanced densification and mechanical properties of ZrB2-SiC processed by a preceramic polymer coating route, Scripta Mater., 59(2008), No. 1, p. 123.
    [16]
    H.L. Wang, D.L. Chen, C.A. Wang, R. Zhang, and D.N. Fang, Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process, Int. J. Refract. Met. Hard Mater., 27(2009), No. 6, p. 1024.
    [17]
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, American Society for Metals, Ohioan(OH), 1986, p. 253.
    [18]
    G.F. William, E.H. Gregory, G.T. Inna, and A.Z. James, Refractory diborides of zirconium and hafnium, J.Am. Ceram. Soc., 90(2007), No. 5, p. 1347.
    [19]
    A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby, High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 87(2004), No. 6, p. 1170.
    [20]
    F. Monteverde, S. Guicciardi, and A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater Sci. Eng. A, 346(2003), No. 1-2, p. 310.
    [21]
    F. Monteverde and A. Bellosi, Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2, Adv. Eng. Mater., 5(2003), No. 7, p. 508.
    [22]
    Q.B. Nguyen and M. Gupta, Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates, Compos. Sci.Technol., 68(2008), No. 10-11, p. 2185.
    [23]
    X.J. Zhang, Y.S. Zhong, M.W. Li, Y.Y. Qin, F. Xu, X.D. He, and Y.B. Li, In-situ precipitated network structure and high-temperature compressive behavior of Nb–Ti–C–B composites, J. Alloys Compd., 613(2014), p. 25.
    [24]
    A. Saxena, N. Singh, D. Kumar, and P. Gupta, Effect of ceramic reinforcement on the properties of metal matrix nanocomposites, Materials Today: Proceedings, 4(2017), No. 4, p. 5561.
    [25]
    M.F. Ashby, F.J. Blunt, and M. Bannister, Flow characteristics of highly constrained metal wires, Acta Metall., 37(1989), No. 7, p. 1847.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(503) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return