Cite this article as: | Wei-dong Tang, Xiang-xin Xue, Song-tao Yang, Li-heng Zhang, and Zhuang Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp.871-880. https://dx.doi.org/10.1007/s12613-018-1636-1 |
C.E. Loo and W. Leung, Factors influencing the bonding phase structure of iron ore sinters, ISIJ Int., 43(2003), No. 9, p. 1393.
|
L. Lu, R.J. Holmes, and J.R. Manuel, Effects of alumina on sintering performance of hematite iron ores, ISIJ Int., 47(2007), No. 3, p. 349.
|
Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546.
|
C.Y. Lu, X.L. Zou, X.G. Lu, X.L. Xie, K. Zheng, W. Xiao, H.W. Cheng, and G.S. Li, Reductive kinetics of Panzhihua ilmenite with hydrogen, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3266.
|
C. Takano, A.P. Zambrano, A.E.A. Nogueira, M.B. Mourao, and Y. Iguchi, Chromites reduction reaction mechanisms in carbon–chromites composite agglomerates at 1773K, ISIJ Int., 47(2007), No. 11, p. 1585.
|
M.G. Rocha, A.S. da Silva, M.B. Mourao, M.H.N. Kurauchi, and C. Takano, Fundamental aspects of sintering of chromites concentrates, Miner. Process. Extr. Metall., 123(2014), No. 4, p. 251.
|
W.G. Mumme, The crystal structure of SFCA–Ⅱ, Ca5.1Al9.3Fe3+18.7Fe2+0.9O48 a new homologue of the aenigmatite structure-type, and structure refinement of SFCA-type, Ca2Al5Fe7O20. Implications for the nature of the “ternary-phase solid-solution” previously reported in the CaO-Al2O3-iron oxide system, Neues Jahrb. Mineral. Abh., 178(2003), No. 3, p. 307.
|
N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1344.
|
T. Umadevi, R. Sah, and P.C. Mahapatra, Influence of sinter basicity (CaO/SiO2) on low and high alumina iron ore sinter quality, Miner. Process. Extr. Metall., 123(2014), No. 2, p. 75.
|
M.I. Pownceby and J.M.F. Clout, Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising, Miner. Process. Extr. Metall., 112(2003), No. 1, p. 44.
|
N.A.S. Webster, M.I. Pownceby, and I.C. Madsen, In situ X-ray diffraction investigation of the formation mechanisms of silico-ferrite of calcium and aluminium-I-type (SFCA-I-type) complex calcium ferrites, ISIJ Int., 53(2013), No. 8, p. 1334.
|
M.I. Pownceby, N.A.S. Webster, J.R. Manuel, and N. Ware, The influence of ore composition on sinter phase mineralogy and strength, Miner. Process. Extr. Metall., 125(2016), No. 3, p. 140.
|
N.A.S. Webster, D.P. O’dea, B.G. Ellis, and M.I. Pownceby, Effects of gibbsite, kaolinite and Al-rich goethite as alumina sources on silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phase formation, ISIJ Int., 57(2017), No. 1, p. 41.
|
N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A.N. Christensen, In situ X-ray diffraction analysis of iron ore sinter phases, J. Appl. Crystallogr., 37(2004), No. 3, p. 362.
|
S.L. Wu, G.L. Zhang, S.G. Chen, and B. Su, Influencing factors and effects of assimilation characteristic of iron ores in sintering process, ISIJ Int., 54(2014), No. 3, p. 582.
|
M.K. Kalenga and A.M. Garbers-Craig, Investigation into how the magnesia, silica, and alumina contents of iron ore sinter influence its mineralogy and properties, J. South. Afr. Inst. Min. Metall., 110(2010), No. 8, p. 447.
|
M. Sinha and R.V. Ramna, Effect of variation of alumina on the microhardness of iron ore sinter phases, ISIJ Int., 49(2009), No. 5, p. 719.
|
T.R.C. Patrick and M.I. Pownceby, Stability of silico-ferrite of calcium and aluminum (SFCA) in air-solid solution limits between 1240℃ and 1390℃ and phase relationships within the Fe2O3–CaO–Al2O3–SiO2(FCAS) system, Metall. Mater. Trans. B, 33(2002), No. 1, p. 79.
|
T. Bhattacharyya, D.K. Pal, and P. Srivastava, Formation of gibbsite in the presence of 2:1 minerals: an example from ultisols of northeast India, Clay Miner., 35(2000), No. 5, p. 827.
|
M.P. Antony, A. Jha, and V. Tathavadkar, Alkali roasting of Indian chromite ores: thermodynamic and kinetic considerations, Miner. Process. Extr. Metall., 115(2013), No. 2, p. 71.
|
D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, and H. Chen, Sintering properties and optimal blending schemes of iron ores, J. Iron Steel Res. Int., 19(2012), No. 6, p. 1.
|
J.J. Dong, G. Wang, M.F. Zuo, H. Li, and Q.G. Xue, Characteristics of the Sierra Leone high alumina iron ore and utilization in sintering, Adv. Mater. Res., 881-883(2014), p. 1515.
|
X. Ma, W.J. Bruckard, and R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, Int. J. Miner. Process., 93(2009), No. 1, p. 54.
|
D.H. Liu, J.L. Zhang, Z.J. Liu, Y.Z. Wang, X. Xue, and J. Yan, Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores, JOM, 68(2016), No. 9, p. 2418.
|
U.S. Yadav, B.D. Pandey, B.K. Das, and D.N. Jena, Influence of magnesia on sintering characteristics of iron ore, Ironmaking Steelmaking, 29(2002), No. 2, p. 91.
|
H.G. Li, J.L. Zhang, Y.D. Pei, Z.X. Zhao, and Z.J. Ma, Melting characteristics of iron ore fine during sintering process, J. Iron Steel Res. Int., 18(2011), No. 5, p. 11.
|
[1] | Song Chen, Zhen Sun, De-gui Zhu. Mineral-phase evolution and sintering behavior of MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(9): 1042-1054. DOI: 10.1007/s12613-018-1655-y |
[2] | Min Zhang, Wu-bian Tian, Pei-gen Zhang, Jian-xiang Ding, Ya-mei Zhang, Zheng-ming Sun. Microstructure and properties of Ag–Ti3SiC2 contact materials prepared by pressureless sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(7): 810-816. DOI: 10.1007/s12613-018-1629-0 |
[3] | Song Chen, De-gui Zhu. Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1438-1447. DOI: 10.1007/s12613-017-1537-8 |
[4] | Chang-he Gao, Peng Jiang, Yong Li, Jia-lin Sun, Jun-jie Zhang, Huan-ying Yang. One step sintering of homogenized bauxite raw material and kinetic study [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1231-1238. DOI: 10.1007/s12613-016-1343-8 |
[5] | Peng Jiang, Jun-hong Chen, Ming-wei Yan, Bin Li, Jin-dong Su, Xin-mei Hou. Morphology characterization of periclase–hercynite refractories by reaction sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(11): 1219-1224. DOI: 10.1007/s12613-015-1188-6 |
[6] | Guo-liang Zhang, Sheng-li Wu, Bo Su, Zhi-gang Que, Chao-gang Hou, Yao Jiang. Influencing factor of sinter body strength and its effects on iron ore sintering indexes [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 553-561. DOI: 10.1007/s12613-015-1107-x |
[7] | Guo-liang Zhang, Sheng-li Wu, Shao-guo Chen, Bo Su, Zhi-gang Que, Chao-gang Hou. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(10): 962-968. DOI: 10.1007/s12613-014-0996-4 |
[8] | Zhi-zhong Hao, Sheng-li Wu, Yi-ci Wang, Guo-ping Luo, Hu-lin Wu, Xiang-guang Duan. Acting mechanism of F, K, and Na in the solid phase sintering reaction of the Baiyunebo iron ore [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 137-142. DOI: 10.1007/s12613-010-0203-1 |
[9] | Jie Bian, Weiqiang Wang, Congsheng Guan, Yonghui Zhao. Bonding strength of graded anti-corrosive coatings of fluoroethylenepropylene (FEP)/polyphenylene sulfide (PPS) [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(6): 572-576. |
[10] | LI Youfen, HONG Yanruo, ZHONG Xiangchong, LI Tingshou. Sintering Behavior and Microstructure of diphasic β-Sialon/Al2O3 Composites [J]. International Journal of Minerals, Metallurgy and Materials, 1997, 4(4): 34-38. |
1. | Ju Xu, Guojun Ma, Mengke Liu, et al. Understanding Chromium Slag Recycling with Sintering–Ironmaking Processes: Influence of Cr2O3 on the Sinter Microstructure and Mechanical Properties of the Silico–Ferrite of Calcium and Aluminum (SFCA). Molecules, 2024, 29(10): 2382. DOI:10.3390/molecules29102382 |
2. | Shushi Zhang, Zhenyang Wang, Jianliang Zhang, et al. Effect of Basicity and MgO/Al2O3 Ratio on Viscosity and Crystallization Behavior of HIsmelt Titanium‐Containing Slag. steel research international, 2024, 95(7) DOI:10.1002/srin.202300835 |
3. | Liu Wei, Congcong Yang, Deqing Zhu, et al. Characterisation of iron ore sinter products with varying binary basicity (CaO/SiO2) from 1.5 to 2.7. Ironmaking & Steelmaking: Processes, Products and Applications, 2024. DOI:10.1177/03019233241259846 |
4. | Zhe Ning, Xiyu Wang, Songtao Yang. Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden. Minerals, 2024, 14(3): 293. DOI:10.3390/min14030293 |
5. | Shu-shi ZHANG, Zhen-yang WANG, Peng HU, et al. Influence of composition and temperature on distribution behavior of V, Ti and Si in HIsmelt. Transactions of Nonferrous Metals Society of China, 2023, 33(12): 3835. DOI:10.1016/S1003-6326(23)66374-5 |
6. | Bojian Chen, Tao Jiang, Jing Wen, et al. Reducibility Optimization and Reaction Mechanism of High-Chromium Vanadium–Titanium Magnetite Flux Pellets. Metallurgical and Materials Transactions B, 2023, 54(5): 2503. DOI:10.1007/s11663-023-02851-z |
7. | Jinge Feng, Jue Tang, Mansheng Chu, et al. Effect of Cr2O3 on the Kinetics Mechanism and Microstructure of Pellet During Oxidation Roasting Process. steel research international, 2023, 94(5) DOI:10.1002/srin.202200735 |
8. | Shushi Zhang, Peng Hu, Jiating Rao, et al. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals, 2022, 12(6): 1019. DOI:10.3390/met12061019 |
9. | Shushi Zhang, Zhenyang Wang, Peng Hu, et al. Hismelt Smelting Vanadium Titano-Magnetite: The Effect of Composition and Temperature on the Distribution Ratio of V, Ti, Si and the Feasibility of Smelting Vanadium Titano-Magnetite with Natural Basicity. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4022324 |
10. | Yang You, Jiabao Guo, Gang Li, et al. Investigation on the granulation behavior of iron ore fine in a horizontal high-shear granulator. Particuology, 2022, 68: 57. DOI:10.1016/j.partic.2021.11.004 |
11. | Xiaoxia Chen, Xuhua Shi, Ting Lan. A semi-supervised linear-nonlinear prediction system for tumbler strength of iron ore sintering process with imbalanced data in multiple working modes. Control Engineering Practice, 2021, 110: 104766. DOI:10.1016/j.conengprac.2021.104766 |
12. | Pan Chen, Yameng Sun, Lei Yang, et al. Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting. Minerals, 2021, 11(12): 1419. DOI:10.3390/min11121419 |
13. | Zhengming Yi, Qiang Liu, Huijun Shao. Effect of MgO on Highly Basic Sinters with High Al2O3. Mining, Metallurgy & Exploration, 2021, 38(5): 2175. DOI:10.1007/s42461-021-00445-4 |
14. | Liheng Zhang, Songtao Yang, Weidong Tang, et al. Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite. Ironmaking & Steelmaking, 2020, 47(7): 821. DOI:10.1080/03019233.2019.1615814 |
15. | Xiao-hui Li, Jue Kou, Ti-chang Sun, et al. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 745. DOI:10.1007/s12613-019-1903-9 |
16. | Xu Zhang, Hao Bai, Xin Lu, et al. Effect of Cooling Methods on the Strength of Silico-ferrite of Calcium and Aluminum of Iron Ore Sinter during the Cooling Process. Metals, 2019, 9(4): 402. DOI:10.3390/met9040402 |
17. | Arghya Majumder, Chanchal Biswas, Saugata Dhar, et al. Intelligent Computing Paradigm and Cutting-edge Technologies. Learning and Analytics in Intelligent Systems, DOI:10.1007/978-3-030-65407-8_2 |