Wei-dong Tang, Xiang-xin Xue, Song-tao Yang, Li-heng Zhang, and Zhuang Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp.871-880. https://dx.doi.org/10.1007/s12613-018-1636-1
Cite this article as: Wei-dong Tang, Xiang-xin Xue, Song-tao Yang, Li-heng Zhang, and Zhuang Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp.871-880. https://dx.doi.org/10.1007/s12613-018-1636-1
Research Article

Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite

Author Affilications
Funds: 

This research was financially supported by the National Basic Research Program of China (No. 2013CB632603), and the National Key Technology R&D Program of China (No. 2015BAB19B02), and the National Natural Science Foundation of China (Nos. 51674084, 51174051, and 51574082).

  • To develop a smelting process for the comprehensive utilization of high-chromium vanadium-titanium magnetite (HCVTM), the micro-sinter test was applied to investigate the influence of basicity and temperature on the HCVTM sinters. The bonding phase strength (BS) was tested via an electronic universal testing machine. The phase transformations of the HCVTM sinters were detected via X-ray diffraction (XRD), whereas the structure and mineralogy of the HCVTM sinters under different temperatures and basicities were detected via scanning electron microscopy in combination with energy-dispersive spectroscopy (SEM–EDS). Our results demonstrate that the BS of the HCVTM sinters exhibits a slightly increasing tendency with an increase in temperature when the basicity is 2.4 and within the range of 2.8–4.0. Many cracks, small size crystals, and dependent phase structures are generated by increasing the sinter basicity. The BS is lower than 4000 N when the basicity is 2.2 and 2.8. When the temperature is in the range of 1280–1300℃, the BS exceeds 4000 N with the basicity of 2.0, 2.4, and 3.4–4.0. The pore size of the HCVTM sinters increases with the increase of the temperature. The perovskite decreases, whereas the silicate phase increases with basicity higher than 3.2. This study provides theoretical and technical foundations for the effective production of HCVTM sinters.
  • C.E. Loo and W. Leung, Factors influencing the bonding phase structure of iron ore sinters, ISIJ Int., 43(2003), No. 9, p. 1393.
    L. Lu, R.J. Holmes, and J.R. Manuel, Effects of alumina on sintering performance of hematite iron ores, ISIJ Int., 47(2007), No. 3, p. 349.
    Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546.
    C.Y. Lu, X.L. Zou, X.G. Lu, X.L. Xie, K. Zheng, W. Xiao, H.W. Cheng, and G.S. Li, Reductive kinetics of Panzhihua ilmenite with hydrogen, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3266.
    C. Takano, A.P. Zambrano, A.E.A. Nogueira, M.B. Mourao, and Y. Iguchi, Chromites reduction reaction mechanisms in carbon–chromites composite agglomerates at 1773K, ISIJ Int., 47(2007), No. 11, p. 1585.
    M.G. Rocha, A.S. da Silva, M.B. Mourao, M.H.N. Kurauchi, and C. Takano, Fundamental aspects of sintering of chromites concentrates, Miner. Process. Extr. Metall., 123(2014), No. 4, p. 251.
    W.G. Mumme, The crystal structure of SFCA–Ⅱ, Ca5.1Al9.3Fe3+18.7Fe2+0.9O48 a new homologue of the aenigmatite structure-type, and structure refinement of SFCA-type, Ca2Al5Fe7O20. Implications for the nature of the “ternary-phase solid-solution” previously reported in the CaO-Al2O3-iron oxide system, Neues Jahrb. Mineral. Abh., 178(2003), No. 3, p. 307.
    N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1344.
    T. Umadevi, R. Sah, and P.C. Mahapatra, Influence of sinter basicity (CaO/SiO2) on low and high alumina iron ore sinter quality, Miner. Process. Extr. Metall., 123(2014), No. 2, p. 75.
    M.I. Pownceby and J.M.F. Clout, Importance of fine ore chemical composition and high temperature phase relations: applications to iron ore sintering and pelletising, Miner. Process. Extr. Metall., 112(2003), No. 1, p. 44.
    N.A.S. Webster, M.I. Pownceby, and I.C. Madsen, In situ X-ray diffraction investigation of the formation mechanisms of silico-ferrite of calcium and aluminium-I-type (SFCA-I-type) complex calcium ferrites, ISIJ Int., 53(2013), No. 8, p. 1334.
    M.I. Pownceby, N.A.S. Webster, J.R. Manuel, and N. Ware, The influence of ore composition on sinter phase mineralogy and strength, Miner. Process. Extr. Metall., 125(2016), No. 3, p. 140.
    N.A.S. Webster, D.P. O’dea, B.G. Ellis, and M.I. Pownceby, Effects of gibbsite, kaolinite and Al-rich goethite as alumina sources on silico-ferrite of calcium and aluminium (SFCA) and SFCA-I iron ore sinter bonding phase formation, ISIJ Int., 57(2017), No. 1, p. 41.
    N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A.N. Christensen, In situ X-ray diffraction analysis of iron ore sinter phases, J. Appl. Crystallogr., 37(2004), No. 3, p. 362.
    S.L. Wu, G.L. Zhang, S.G. Chen, and B. Su, Influencing factors and effects of assimilation characteristic of iron ores in sintering process, ISIJ Int., 54(2014), No. 3, p. 582.
    M.K. Kalenga and A.M. Garbers-Craig, Investigation into how the magnesia, silica, and alumina contents of iron ore sinter influence its mineralogy and properties, J. South. Afr. Inst. Min. Metall., 110(2010), No. 8, p. 447.
    M. Sinha and R.V. Ramna, Effect of variation of alumina on the microhardness of iron ore sinter phases, ISIJ Int., 49(2009), No. 5, p. 719.
    T.R.C. Patrick and M.I. Pownceby, Stability of silico-ferrite of calcium and aluminum (SFCA) in air-solid solution limits between 1240℃ and 1390℃ and phase relationships within the Fe2O3–CaO–Al2O3–SiO2(FCAS) system, Metall. Mater. Trans. B, 33(2002), No. 1, p. 79.
    T. Bhattacharyya, D.K. Pal, and P. Srivastava, Formation of gibbsite in the presence of 2:1 minerals: an example from ultisols of northeast India, Clay Miner., 35(2000), No. 5, p. 827.
    M.P. Antony, A. Jha, and V. Tathavadkar, Alkali roasting of Indian chromite ores: thermodynamic and kinetic considerations, Miner. Process. Extr. Metall., 115(2013), No. 2, p. 71.
    D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, and H. Chen, Sintering properties and optimal blending schemes of iron ores, J. Iron Steel Res. Int., 19(2012), No. 6, p. 1.
    J.J. Dong, G. Wang, M.F. Zuo, H. Li, and Q.G. Xue, Characteristics of the Sierra Leone high alumina iron ore and utilization in sintering, Adv. Mater. Res., 881-883(2014), p. 1515.
    X. Ma, W.J. Bruckard, and R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, Int. J. Miner. Process., 93(2009), No. 1, p. 54.
    D.H. Liu, J.L. Zhang, Z.J. Liu, Y.Z. Wang, X. Xue, and J. Yan, Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores, JOM, 68(2016), No. 9, p. 2418.
    U.S. Yadav, B.D. Pandey, B.K. Das, and D.N. Jena, Influence of magnesia on sintering characteristics of iron ore, Ironmaking Steelmaking, 29(2002), No. 2, p. 91.
    H.G. Li, J.L. Zhang, Y.D. Pei, Z.X. Zhao, and Z.J. Ma, Melting characteristics of iron ore fine during sintering process, J. Iron Steel Res. Int., 18(2011), No. 5, p. 11.
  • Related Articles

    [1]Song Chen, Zhen Sun, De-gui Zhu. Mineral-phase evolution and sintering behavior of MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(9): 1042-1054. DOI: 10.1007/s12613-018-1655-y
    [2]Min Zhang, Wu-bian Tian, Pei-gen Zhang, Jian-xiang Ding, Ya-mei Zhang, Zheng-ming Sun. Microstructure and properties of Ag–Ti3SiC2 contact materials prepared by pressureless sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(7): 810-816. DOI: 10.1007/s12613-018-1629-0
    [3]Song Chen, De-gui Zhu. Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(12): 1438-1447. DOI: 10.1007/s12613-017-1537-8
    [4]Chang-he Gao, Peng Jiang, Yong Li, Jia-lin Sun, Jun-jie Zhang, Huan-ying Yang. One step sintering of homogenized bauxite raw material and kinetic study [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(10): 1231-1238. DOI: 10.1007/s12613-016-1343-8
    [5]Peng Jiang, Jun-hong Chen, Ming-wei Yan, Bin Li, Jin-dong Su, Xin-mei Hou. Morphology characterization of periclase–hercynite refractories by reaction sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(11): 1219-1224. DOI: 10.1007/s12613-015-1188-6
    [6]Guo-liang Zhang, Sheng-li Wu, Bo Su, Zhi-gang Que, Chao-gang Hou, Yao Jiang. Influencing factor of sinter body strength and its effects on iron ore sintering indexes [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 553-561. DOI: 10.1007/s12613-015-1107-x
    [7]Guo-liang Zhang, Sheng-li Wu, Shao-guo Chen, Bo Su, Zhi-gang Que, Chao-gang Hou. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(10): 962-968. DOI: 10.1007/s12613-014-0996-4
    [8]Zhi-zhong Hao, Sheng-li Wu, Yi-ci Wang, Guo-ping Luo, Hu-lin Wu, Xiang-guang Duan. Acting mechanism of F, K, and Na in the solid phase sintering reaction of the Baiyunebo iron ore [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 137-142. DOI: 10.1007/s12613-010-0203-1
    [9]Jie Bian, Weiqiang Wang, Congsheng Guan, Yonghui Zhao. Bonding strength of graded anti-corrosive coatings of fluoroethylenepropylene (FEP)/polyphenylene sulfide (PPS) [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(6): 572-576.
    [10]LI Youfen, HONG Yanruo, ZHONG Xiangchong, LI Tingshou. Sintering Behavior and Microstructure of diphasic β-Sialon/Al2O3 Composites [J]. International Journal of Minerals, Metallurgy and Materials, 1997, 4(4): 34-38.
  • Cited by

    Periodical cited type(17)

    1. Ju Xu, Guojun Ma, Mengke Liu, et al. Understanding Chromium Slag Recycling with Sintering–Ironmaking Processes: Influence of Cr2O3 on the Sinter Microstructure and Mechanical Properties of the Silico–Ferrite of Calcium and Aluminum (SFCA). Molecules, 2024, 29(10): 2382. DOI:10.3390/molecules29102382
    2. Shushi Zhang, Zhenyang Wang, Jianliang Zhang, et al. Effect of Basicity and MgO/Al2O3 Ratio on Viscosity and Crystallization Behavior of HIsmelt Titanium‐Containing Slag. steel research international, 2024, 95(7) DOI:10.1002/srin.202300835
    3. Liu Wei, Congcong Yang, Deqing Zhu, et al. Characterisation of iron ore sinter products with varying binary basicity (CaO/SiO2) from 1.5 to 2.7. Ironmaking & Steelmaking: Processes, Products and Applications, 2024. DOI:10.1177/03019233241259846
    4. Zhe Ning, Xiyu Wang, Songtao Yang. Influence of Vanadium–Titanium Sinter Basicity on Cohesive Dripping Properties of Blast Furnace Comprehensive Burden. Minerals, 2024, 14(3): 293. DOI:10.3390/min14030293
    5. Shu-shi ZHANG, Zhen-yang WANG, Peng HU, et al. Influence of composition and temperature on distribution behavior of V, Ti and Si in HIsmelt. Transactions of Nonferrous Metals Society of China, 2023, 33(12): 3835. DOI:10.1016/S1003-6326(23)66374-5
    6. Bojian Chen, Tao Jiang, Jing Wen, et al. Reducibility Optimization and Reaction Mechanism of High-Chromium Vanadium–Titanium Magnetite Flux Pellets. Metallurgical and Materials Transactions B, 2023, 54(5): 2503. DOI:10.1007/s11663-023-02851-z
    7. Jinge Feng, Jue Tang, Mansheng Chu, et al. Effect of Cr2O3 on the Kinetics Mechanism and Microstructure of Pellet During Oxidation Roasting Process. steel research international, 2023, 94(5) DOI:10.1002/srin.202200735
    8. Shushi Zhang, Peng Hu, Jiating Rao, et al. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals, 2022, 12(6): 1019. DOI:10.3390/met12061019
    9. Shushi Zhang, Zhenyang Wang, Peng Hu, et al. Hismelt Smelting Vanadium Titano-Magnetite: The Effect of Composition and Temperature on the Distribution Ratio of V, Ti, Si and the Feasibility of Smelting Vanadium Titano-Magnetite with Natural Basicity. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4022324
    10. Yang You, Jiabao Guo, Gang Li, et al. Investigation on the granulation behavior of iron ore fine in a horizontal high-shear granulator. Particuology, 2022, 68: 57. DOI:10.1016/j.partic.2021.11.004
    11. Xiaoxia Chen, Xuhua Shi, Ting Lan. A semi-supervised linear-nonlinear prediction system for tumbler strength of iron ore sintering process with imbalanced data in multiple working modes. Control Engineering Practice, 2021, 110: 104766. DOI:10.1016/j.conengprac.2021.104766
    12. Pan Chen, Yameng Sun, Lei Yang, et al. Utilization of Metallurgy—Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting. Minerals, 2021, 11(12): 1419. DOI:10.3390/min11121419
    13. Zhengming Yi, Qiang Liu, Huijun Shao. Effect of MgO on Highly Basic Sinters with High Al2O3. Mining, Metallurgy & Exploration, 2021, 38(5): 2175. DOI:10.1007/s42461-021-00445-4
    14. Liheng Zhang, Songtao Yang, Weidong Tang, et al. Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite. Ironmaking & Steelmaking, 2020, 47(7): 821. DOI:10.1080/03019233.2019.1615814
    15. Xiao-hui Li, Jue Kou, Ti-chang Sun, et al. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 745. DOI:10.1007/s12613-019-1903-9
    16. Xu Zhang, Hao Bai, Xin Lu, et al. Effect of Cooling Methods on the Strength of Silico-ferrite of Calcium and Aluminum of Iron Ore Sinter during the Cooling Process. Metals, 2019, 9(4): 402. DOI:10.3390/met9040402
    17. Arghya Majumder, Chanchal Biswas, Saugata Dhar, et al. Intelligent Computing Paradigm and Cutting-edge Technologies. Learning and Analytics in Intelligent Systems, DOI:10.1007/978-3-030-65407-8_2

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (536) PDF downloads (20) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return