Guang Wang, Qing-guo Xue, and Jing-song Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp.1000-1009. https://dx.doi.org/10.1007/s12613-018-1650-3
Cite this article as: Guang Wang, Qing-guo Xue, and Jing-song Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp.1000-1009. https://dx.doi.org/10.1007/s12613-018-1650-3

Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation

  • Ludwigite is a kind of complex iron ore containing boron, iron, and magnesium, and it is the most promising boron resource in China. Selective reduction of iron oxide is the key step for the comprehensive utilization of ludwigite. In the present work, the reduction mechanism of ludwigite was investigated. The thermogravimetry and differential scanning calorimetry analysis and isothermal reduction of ludwigite/coal composite pellet were performed. Ludwigite yielded a lower reduction starting temperature and a higher final reduction degree compared with the traditional iron concentrates. Higher specific surface area and more fine cracks might be the main reasons for the better reducibility of ludwigite. Reducing temperature highly affected the reaction fraction and microstructure of the reduced pellets, which are closely related to the separation degree of boron and iron. Increasing reducing temperature benefited the boron and iron magnetic separation. Optimum magnetic separation results could be obtained when the pellet was reduced at 1300℃. The separated boron-rich non-magnetic concentrate presented poor crystalline structure, and its extraction efficiency for boron reached 64.3%. The obtained experimental results can provide reference for the determination of the comprehensive utilization flow sheet of ludwigite.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return