Cite this article as: |
Li Lin, Bao-shun Li, Guo-ming Zhu, Yong-lin Kang, and Ren-dong Liu, Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1181-1190. https://doi.org/10.1007/s12613-018-1670-z |
Guo-ming Zhu E-mail: zhuguoming@ustb.edu.cn
[1] |
J.S. Chen, Discussion of the modern electronic technology application and future development trend on automobile, Appl. Mech. Mater., 155-156(2012), p. 627.
|
[2] |
Y.X. Li, Z.Q. Lin, A.Q. Jiang, and G.L. Chen, Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis, Mater. Des., 25(2004), No. 7, p. 579.
|
[3] |
T. Taylor, G. Fourlaris, P. Evans, and G. Bright, New generation ultrahigh strength boron steel for automotive hot stamping technologies, Mater. Sci. Technol., 30(2014), No. 7, p. 818.
|
[4] |
R. Kurji, O. Lavigne, and R. Ghomashchi, Micromechanical characterisation of weld metal susceptibility to hydrogen-assisted cold cracking using instrumented indentation, Weld. World, 60(2016), No. 5, p. 883.
|
[5] |
X.H. Han, Y.Y. Zhong, S.L. Tan, Y.N. Ding, and J. Chen, Microstructure and performance evaluations on Q&P hot stamping parts of several UHSS sheet metals, Sci. China:Technol. Sci., 60(2017), No. 11, p. 1692.
|
[6] |
Y. Chang, X.D. Li, K.M. Zhao, C.Y. Wang, G.J. Zheng, P. Hu, and H. Dong, Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts, Mater. Sci. Eng. A, 629(2015), p. 1.
|
[7] |
C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, and J.W. Morris Jr, The microstructure of lath martensite in quenched 9Ni steel, Acta Mater., 69(2014), p. 372.
|
[8] |
T. Niino, J. Inoue, M. Ojima, S. Nambu, and T. Koseki, Effects of solute carbon on the work hardening behavior of lath martensite in low-carbon steel, ISIJ Int., 57(2017), No. 1, p. 181.
|
[9] |
Z.J. Luo, L.P. Wang, W. Meng, J.C. Shen, and S.U. Hang,Effect of lath martensite/bainite microstructure on strength and toughness of a low carbon martensite steel, Trans. Mater. Heat Treat., 33(2012), No. 2, p. 85.
|
[10] |
S.C. Li, G.M. Zhu, and Y.L. Kang, Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel, J. Alloys Compd., 675(2016), p. 104.
|
[11] |
P. Gong, E.J. Palmiere, and W.M. Rainforth, Dissolution and precipitation behavior in steels microalloyed with niobium during thermomechanical processing, Acta Mater., 97(2015), p. 392.
|
[12] |
M. Zaeimi, A. Basti, and M. Alitavoli, Effect of martensite volume fraction on forming limit diagrams of dual-phase steel, J. Mater. Eng. Perform., 24(2015), No. 5, p. 1781.
|
[13] |
V.I. Izotov, N.A. Komkov, and G.A. Filippov, Kinetics and crystal geometry of precipitation of vanadium carbides at the interphase boundary upon pearlitic transformation of steel, Phys. Met. Metallogr., 114(2013), No. 3, p. 256.
|
[14] |
A. Ostapovets and A. Serra, Slip dislocation and twin nucleation mechanisms in hcp metals, J. Mater. Sci., 52(2017), No. 1, p. 533.
|
[15] |
H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel, Acta Mater., 59(2011), No. 16, p. 6264.
|
[16] |
Y.L. Fang, Z.Y. Liu, W.Y. Xue, H.M. Song, and L.Z. Jiang, Precipitation of secondary phases in lean duplex stainless steel 2101 during isothermal ageing, ISIJ Int., 50(2010), No. 2, p. 286.
|
[17] |
V. Homolová, J. Janovec, P. Záhumenský, and A. Výrostková, Influence of thermal-deformation history on evolution of secondary phases in p91 steel, Mater. Sci. Eng. A, 349(2003), No. 1-2, p. 306.
|
[18] |
S. Wu, X. Li, J. Zhang, and C. Shang, Effect of Nb on transformation and microstructure refinement in medium carbon steel, Acta Metall. Sin., 50(2014), No. 4, p. 400.
|
[19] |
J.H. Li, W.L. Zhang, C. Yuan, X.Q. Bao, and X.X. Gao, Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets, Rare Met., 36(2017), No. 5, p. 1.
|
[20] |
S. Roy, D. Chakrabarti, and G.K. Dey, Austenite grain structures in Ti and Nb-containing high-strength low-alloy steel during slab reheating, Metall. Mater. Trans. A, 44(2013), No. 2, p. 717.
|
[21] |
H.Y. Wang, Effect of Rare Earth on NbC Dissolution and Precipitation Behaviors in Microalloy Steels[Dissertation], University of Science and Technology Beijing, Beijing, 2017, p. 64.
|
[22] |
B. Wang, Y.W. Hu, X.F. Yang, X.W. Cai, Y. Jiang, and J.Q. Luo, Microstructure and properties of Nb-bearing high-strength low-alloy surfacing layers, Met. Sci. Technol., 33(2016), No. 8, p. 1004.
|