Zhen-tao Dong, Yuan Li, Kai-liang Ren, Shu-qin Yang, Yu-meng Zhao, Yong-jie Yuan, Lu Zhang, and Shu-min Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp.1201-1207. https://dx.doi.org/10.1007/s12613-018-1672-x
Cite this article as: Zhen-tao Dong, Yuan Li, Kai-liang Ren, Shu-qin Yang, Yu-meng Zhao, Yong-jie Yuan, Lu Zhang, and Shu-min Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp.1201-1207. https://dx.doi.org/10.1007/s12613-018-1672-x
Research Article

Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (Nos. 51771164, 51571173, and 51701175), the National Postdoctoral Program for Innovative Talents of China (No. BX201700204), and the Innovation Fund for the Graduate Students of Hebei Province (No. CXZZBS2017057).

  • In this work, we synthesized LaFeO3-xwt%Ni (x=0, 5, 10, 15) composites via a solid-state reaction method by adding Ni to the reactants, La2O3 and Fe2O3. Field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS) results revealed that Ni powders evenly dispersed among the LaFeO3 particles and apparently reduced their aggregation, which imparted the composites with a loose structure. Moreover, the Ni formed a conductive network, thus improving the conductivity of the composites. The maximum discharge capacity of the LaFeO3 electrodes remarkably increased from 266.8 mAh·g-1 (x=0) to 339.7 mAh·g-1 (x=10). In particular, the high-rate dischargeability of the LaFeO3-10wt%Ni electrode at a discharge current density of 1500 mA·g-1 reached 54.6%, which was approximately 1.5 times higher than that of the pure LaFeO3. Such a Ni-modified loose structure not only increased the charge transfer rate on the surface of the LaFeO3 particles but also enhanced the hydrogen diffusion rate in the bulk LaFeO3.
  • A. Taniguchi, N. Fujioka, M. Ikoma, and A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100(2001), No. 1-4, p. 117.
    H. Ye, Y.X. Huang, J.X. Chen, and H. Zhang, MmNi3.55Co0.75Mn0.4Al0.3B0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries, J. Power Sources, 103(2002), No. 2, p. 293.
    U. Köhler, J. Kümpers, and M. Ullrich, High performance nickel-metal hydride and lithium-ion batteries, J. Power Sources, 105(2002), No. 2, p. 139.
    G. Deng, Y.G. Chen, M.D. Tao, C.L. Wu, X.Q. Shen, H. Yang, and M. Liu, Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries, Electrochim. Acta, 55(2010), No. 3, p. 1120.
    J.J. Xu, Z.L. Wang, D. Xu, F.Z. Meng, and X.B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance, Energy Environ. Sci., 7(2014), No.7, p. 2213.
    M.M. Li, C.C. Yang, C.C. Wang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, W.T. Zheng, J.S. Lian, and Q. Jiang, Design of hydrogen storage alloys/nanoporous metals hybrid electrodes for nickel-metal hydride batteries, Sci. Rep., 6(2016), art. No. 27601.
    Q. Wang, G. Deng, Z.Q. Chen, Y.G. Chen, and N.P. Cheng, Electrochemical hydrogen property improved in nano-structured perovskite oxide LaFeO3 for Ni/MH battery, J. Appl. Phys., 113(2013), No. 5, p. 053305.
    X. Ren, H.T. Yang, S. Gen, J. Zhou, T.Z. Yang, X.Q. Zhang, Z.H. Cheng, and S.H. Sun, Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis, Nanoscale, 8(2016), No. 2, p. 752.
    G. Deng, Y.G. Chen, M.D. Tao, C.L. Wu, X.Q. Shen, and H. Yang, Electrochemical properties of La1-xSrxFeO3 (x=0.2, 0.4) as negative electrode of Ni-MH batteries, Electrochim. Acta, 54(2009), No. 15, p. 3910.
    D.K. Lim, H.N. Im, B. Singh, C.J. Park, and S.J. Song, Electrochemical hydrogen charge and discharge properties of La0.1Sr0.9Co1-yFeyO3-δ (y=0, 0.2, 1) electrodes in alkaline electrolyte solution, Electrochim. Acta, 102(2013), p. 393.
    D.K. Lim, H.N. Im, J. Kim, and S.J. Song, Electrochemical properties of LaMO3 (M=Co or Fe) as the negative electrode in a hydrogen battery, J. Phys. Chem. Solids, 74(2013), No. 1, p. 115.
    Y.R. Pei, Y. Li, J.Y. Che, W.Z. Shen, Y.C. Wang, S.Q. Yang, and S.M. Han, Study on the high-temperature electrochemical performance of perovskite-type oxide LaFeO3 with carbon modification, Int. J. Hydrogen Energy, 40(2015), No. 28, p. 8742.
    Y.R. Pei, W.K. Du, Y. Li, W.Z. Shen, Y.C. Wang, S.Q. Yang, and S.M. Han, The effect of carbon-polyaniline hybrid coating on high-temperature electrochemical performance of perovskite-type oxide LaFeO3 for MH-Ni batteries, Phys. Chem. Chem. Phys., 17(2015), No. 27, p. 18185.
    Y.J. Yuan, Z.T. Dong, Y. Li, L. Zhang, Y.M. Zhao, B. Wang, and S.M. Han, Electrochemical properties of LaFeO3-rGO composite, Prog. Nat. Sci-Mater., 2727(2017), No. 1, p. 88.
    Z.W. Ma, W.H. Zhou, C.L. Wu, D. Zhu, L.W. Huang, Q.N. Wang, Z.Y. Tang, and Y.G. Gui, Effects of size of nickel powder additive on the low-temperature electrochemical performances and kinetics parameters of AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery, J. Alloys Compd., 660(2016), p. 289.
    Y.M. Kang, K.T. Kim, J.H. Kim, H.S. Kim, P.S. Lee, J.Y. Lee, H. Liu, and S.X. Dou, Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries, J. Power Sources, 133(2004), No. 2, p. 252.
    M.H. Li, Y.F. Zhu, C. Yang, J.G. Zhang, W. Chen, and L.Q. Li, Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel, Int. J. Hydrogen Energy, 40(2015), No. 40, p. 13949.
    W.Z. Shen, S.M. Han, Y. Li, S.Q. Yang, and Q. Miao, Effect of electroplating polyaniline on electrochemical kinetics of La-Mg-Ni-based hydrogen storage alloy, Appl. Surf. Sci., 258(2012), No. 17, p. 6316.
    Z.K. Lin and S.F. Li, Effects of nano nickel powders addition on flash pyrolysis of poly (ethylene glycol), Eur. Polym. J., 44(2008), No. 3, p. 645.
    N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd., 202(1993), No. 1-2, p. 183.
    Q. Wang, Z.Q. Chen, Y.G. Chen, N.P. Cheng, and H. Qun, Hydrogen storage in perovskite-type oxides ABO3 for Ni/MH battery applications:a density functional investigation, Ind. Eng. Chem. Res., 51(2012), No. 37, p. 11821.
  • Related Articles

    [1]Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li, Jie Gao. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(1): 88-93. DOI: 10.1007/s12613-018-1550-6
    [2]Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, Rui Wang. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(3): 342-351. DOI: 10.1007/s12613-017-1413-6
    [3]Bin-bin Wei, Yan-bo Wu, Fang-yuan Yu, Ya-nan Zhou. Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(4): 474-480. DOI: 10.1007/s12613-016-1258-4
    [4]Yan Li, Ting Zhou, Peng Luo, Shuo-gui Xu. Surface modification of Ti-49.8at%Ni alloy by Ti ion implantation: phase transformation, corrosion, and cell behavior [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 868-875. DOI: 10.1007/s12613-015-1144-5
    [5]Tao Li, Juan-yu Yang, Shi-gang Lu. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 752-756. DOI: 10.1007/s12613-012-0623-1
    [6]Ting-feng Yi, Yan-rong Zhu, Xin-guo Hu. Structure and electrochemical properties of LiLaxMn2-xO4 cathode material by the ultrasonic-assisted sol-gel method [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 119-123. DOI: 10.1016/S1674-4799(09)60020-0
    [7]Tingfeng Yi, Xinguo Hu, Dianlong Wang, Huibin Huo. Effects of Al,F dual substitutions on the structure and electrochemical properties of lithium manganese oxide [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(2): 182-186. DOI: 10.1016/S1005-8850(08)60035-3
    [8]Jinxia Guo, Xiaogang Hao, Xuli Ma, Zhonglin Zhang, Shibin Liu. Electrochemical characterization of ion selectivity in electrodeposited nickel hexacyanoferrate thin films [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(1): 79-83. DOI: 10.1016/S1005-8850(08)60016-X
    [9]Shijian Yan, Jian Wang, Lu Qi, Wenhuai Tian. Charge and discharge curves:a unique reliable evidence for the electrochemical properties of LiCoO2 [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(5): 473-476. DOI: 10.1016/S1005-8850(07)60093-0
    [10]Chaoli Yin, Hailei Zhao, Hong Guo, Xianliang Huang, Weihua Qiu. Effect of the synthesis method of SnSb anode materials on their electrochemical properties [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(4): 345-349. DOI: 10.1016/S1005-8850(07)60068-1

Catalog

    Share Article

    Article Metrics

    Article views (518) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return