Ti leaching from activated ilmenite-Fe mixture at different milling energy levels
-
Graphical Abstract
-
Abstract
Mechanical activation processes on ilmenite concentrate were performed in three different energy levels. Iron powder as a reducing agent was added to ilmenite in the milling stage and the mechanically activated mixture was subjected to acid leaching. The leaching experiments were designed using the Taguchi method, and the optimum ranges were obtained. Furthermore, response surface methodology (RSM) was used to optimize the critical parameters in the leaching system to achieve the highest titanium (Ti) leachability. Based on the inductively coupled plasma-optical emission spectrometry (ICP-OES) results, maximum leaching recovery of Ti (80%) was obtained using activated Ti concentrates at a medium activation energy level, which is calculated to be 25.38 kJ/g, using 15vol% hydrochloric acid (HCl), a temperature of 70℃, leaching time of 3 h, and a solid-to-liquid ratio of 0.05 g·mL-1. Intensifying the milling energy from a low to high level led to a decrease in the mean crystallite size and also structure homogenization at the high energy level. According to the transmission electron microscopy (TEM) images, the mean grain size of the ilmenite/Fe nanocomposite was about 30 nm at the medium energy level sample. Finally, solvent extraction by tributyl phosphate (TBP) was performed on the leach liquor to separate dissolved Fe (the major impurity) from Ti, which led to 83% extraction recovery of Ti.
-
-